1 / 27

Plant-Microbe Interactions

Plant-Microbe Interactions. SUMBER: culter.colorado.edu/~ kittel /Slides18_13Nv07. ppt ‎. INTERAKSI TANAMAN-MIKROBA. Plant-microbe interactions diverse – from the plant perspective: Negatif – e.g. Parasitis / Pathogenik Neutral Positif – Simbiotik.

santo
Télécharger la présentation

Plant-Microbe Interactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plant-Microbe Interactions SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  2. INTERAKSI TANAMAN-MIKROBA • Plant-microbe interactions diverse – from the plant perspective: • Negatif– e.g. Parasitis/ Pathogenik • Neutral • Positif– Simbiotik • Pokokbahasan important positive interactions with respect to plant abundance and distribution – related to plant nutrient and water supply: • Dekomposisi BOT • Mycorrhizae • Fiksasi N2 • Rhizosphere Perananinteraksiinidalamsiklus N SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  3. I. DekomposiBahanOrganik • Input rates – • Generally follow rates of production • Deciduous = evergreen • Pemasokutamaharatanaman – terutama N & P • Bahanmentah • Soil organic matter derived primarily from plants – • Mainly leaves and fine roots • Wood can be important component in old growth forests SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  4. B. Proses-Proses nematode termites springtail (Isotoma viridis) • 1. FragmentasiBahanOrganik • Breakdown of organic matter (OM) into smaller bits = humus • By soil ‘critters’ – including nematodes, earthworms, springtails, termites • consume and excrete OM  incomplete digestion SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  5. 2. MineralisasiBahanOrganik • Breakdown OM senyawa an-organik • Microbial process: accomplished by enzymes excreted into the soil For Nitrogen energy for heterotrophic bacteria Mineralization Ammonium NH4+ proteins (insoluble) amino acids proteases Immobilization Nitrification Nitrite NO2- energy for nitrifying bacteria* Microbial uptake Nitrate NO3- Plant uptake • * In 2 steps by 2 different kinds of bacteria – (1) Nitrosomonas oxidize NH3 to nitrites + (2) Nitrobacter oxidize nitrites to nitrates SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  6. C. Serapan N olehTanaman– Chemical form taken up can vary mineralization Protein NH4+ NO3- SerapanTanaman • 1) Nitrate (NO3-) • Lebihdisenangiolehtanaman, lebihmudahdiserap • Even though requires conversion to NH4+before be used  lots of energy • vs. taking up & storing NH4+ problematic • More strongly bound to soil particles • Acidifies the soil • Not easily stored • 2) Ammonium (NH4+ ) – • Digunakanlangsungolehtanamandalamtanah yang nitrifikasinyalambat (mis. Tanah basah) SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  7. 3) Beberapajenistanamanmenyerapsedikitasam amino (mis. glycine) • Circumvents the need for N mineralization • Difasilitasiolehadanyamycorrhiza proteins mineralization NH4+ amino acids immobilization nitrification microbial uptake NO3- Penyerapanlangsung SerapanTanaman SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  8. D. KontrolthdKecepatanDekomposisi BO • Temperature – • Warmer is better • <45°C • 2) Moisture – intermediate is best • Too little  desiccation • Too much  limits O2 diffusion RespirasiMikroba Tanah T Soil Moisture % SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  9. 3) FaktorTanaman – Kualitasbiomasaseresah Decomposition rate as fn(lignin, N) Deciduous forest spp • b) Material strukturaltanaman • Lignin – complex polymer, cell walls • Confers strength with flexibility • – e.g. oak leaves • Relatively recalcitrant • High conc.  lowers decomposition • a) Rasio C:N biomasaseresah( = Konsentrasi N) • If C relative to N high  N limits microbial growth • Immobilization favored • N to plants  SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  10. OH R c) Senyawasekundertanaman • Anti-herbivore/microbial • Common are phenolics – e.g. tannins • – Aromatic ring + hydroxyl group, other compounds • KontroldekomposisiBahanorganikoleh: • Bind to enzymes, blocking active sites lower mineralization • N compounds bind to phenolicsgreater immobilization by soil • Phenolics C source for microbes greater immobilization by microbes SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  11. II. Mycorrhiza = JamurAkar • HubunganSimbiotikantaratanaman (akar) & fungi tanah • Plant provides fungus with energy (C) • Fungus enhances soil resource uptake • Penyebarannya: • Occurs ~80% angiosperm spp • All gymnosperms • Sometimes an obligaterelationship. SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  12. KelompokutamaMycorrhiza: • 1) Ectomycorrhiza– • Fungus forms “sheath” around the root (mantle) • Grows in between cortical cells = Hartig net – apoplastic connection • Occur most often • in woody spp SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  13. 2) Endomycorrhiza– • Fungi menembussel-selakar Arbuscule in plant cell • Common example is arbuscularmycorrhizae (AM) • Found in both herbaceous & woody plants • Arbuscule = exchange site SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  14. C. FungsiMycorrhiza: • Perananpenghubungtanaman-tanah: • Increase surface area & reach for absorption of soil water & nutrients • Increase mobility and uptake of soil P • Provides plant with access to organic N • Protect roots from toxic heavy metals • Protect roots from pathogens • Efekharatanahthdmycorrhiza • Intermediate soil P concentrations favorable • Extremely low P – poor fungal infection • Hi P – plants suppress fungal growth • – taking up P directly • Kejenuhan N SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  15. III. Fikisasi N2 • N2 abundant – chemically inert • N2 must be fixed = converted into chemically usable form • Lightning • High temperature or pressure (humans) • Biologically fixed • Nitrogenase– EnsimKatalisisN2 NH3 • Expensive process – ATP, Molybdenum • Anaerobik : Memerlukanstrukturkhusus SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  16. A. Hanyaterjadipadaorganisme Prokaryote: • Bacteria (e.g. Rhizobium, Frankia) • Cyanobacteria (e.g. Nostoc, Anabaena) • Free-living in soil/water – heterocysts • Symbiotic with plants – root nodules • Loose association with plants Anabaena with heterocysts • Simbiosisdengantumbuhan– Mutualism • Prokaryote receives carbohydrates • Plant may allocate up to 30% of its C to the symbiont • Tumbuhanmenyediakantapakanaerobik – Bintilakar • Tumbuhanmenerima N SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  17. soybean root • Contohsistemsimbiotikfiksasi N2olehtumbuhan • Legumes (Fabaceae) • Widespread • bacteria = e.g., Rhizobiumspp. • Those with N2-fixing symbionts form root “nodules” • – anaerobic sites that “house” bacteria SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  18. Problem Toksisitas O2 • Symbionts regulate O2 in the nodule with leghemoglobin • Different part synthesized by the bacteria and legume Cross-section of nodules of soybean nodules • Symbiontsmengendalikan O2dalambintilakardenganmembentukleghemoglobin • An oxygen carrier (in legumes) to prevent oxygen toxicity for the bacterium • different pieces synthesized by the bacteria (heme) and in the plant (protein) SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  19. 2) Simbiosistumbuhan Non-legume: • “Actinorhizal”= associated with actinomycetes (N2-fixing bacteria) • genus Frankia • Usually woody species – e.g. Alders, Ceanothus Ceanothus velutinus - snowbrush Ceanothus roots, with Frankia vesicles Bacteria in root or small vesicles SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  20. (2) Simbiosistumbuhan Non-legume “Actinorhizal”= associated with actinomycetes (N2-fixing bacteria) genus Frankia Usually woody species – e.g. Alders, Ceanothus Bacteria occur in root or small vesicles Buffaloberry (Shepherdiaargentea) - actinorhizal shrub (Arizona) • Bacteria in root or small vesicles SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  21. B. MaknaEkologisFiksasi N2 • (1). Important in “young” ecosystems – • Young soils low in organic matter, N • Ecological importance of N2 fixation • (1) Most important in “young” ecosystems (early in primary succession) - • young soils are low in organic matter, and thus N, which is often a limiting nutrient for plant growth • e.g., newly exposed (glaciated) or newly laid down rock (volcanic), • recently denuded landscapes(human activities, directly or indirectly – bulldozing, erosion SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  22. 2) Plant-level responses to increased soil N conc: • Some plants (facultative N-fixers) respond to soil N concentration  • Plant shifts to direct N uptake • N fixation  • Number of nodules decreases • Plant-level: responses on N-fixing plants to high soil N conc: • In some plants (facultative N-fixers) – • As N conc, N fixation decreases • Plant shifts to direct N uptake • #nodules decreases SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  23. 3) Kompetisi: Interaksitumbuhanfiksasi N • N2-fixing plants higher P, light, Mo, and Fe requirements •  Poor competitors • Competitive exclusion less earlier in succession • Though - N2 fixers in “mature” ecosystems • Competition – N-fixers and plant community interactions • because N2 fixing plants have higher P, light, Mo, and Fe requirements . • They are believed to be poor competitors; • chances for competitive exclusion lower earlier in succession (although there are N2 fixers in “mature” ecosystems) • e.g. of plants important in early stages of succession: • lupines, alders, clovers, Dryas SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  24. PLANT REMAINS PLANT Natural N cycle • IV. Kehilangan N dariekosistem • Leaching  to aquatic systems • Kebakaran Penguapan • Denitrifikasi N2, N2O to atmosfir • – Closes the N cycle! • Bacteria mediated • Anaerobik. N2O SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  25. Fertilizer 80 Legumes, other plants 40 Fossil fuels 20 Biomass burning 40 Wetland draining 10 Land clearing 20 Total from human sources 210 Annual release(1012 g N/yr) NATURAL SOURCES Soil bacteria, algae, lightning, etc. 140 ANTHROPOGENICSOURCES Annual release(1012 g N/yr) Altered N cycle Annual release of fixed N2 (1012 g = teragram, trillion gr) Source: Peter M. Vitouseket al., "Human Alteration of the Global Nitrogen Cycle: Causes and Consequences," Issues in Ecology, No. 1 (1997), pp. 4-6. From - Peter M. Vitouseket al., "Human Alteration of the Global Nitrogen Cycle - Causes and Consequences," Issues in Ecology, No. 1 (1997), pp. 4-6.

  26. V. InteraksiRhizosphere • Jaring-jaringmakananbawahtanah Fine root • Zone within 2 mm of roots – hotspot of biological activity • Roots exude C & cells slough off = lots of goodies for soil microbes  lots of microbes for their consumers (protozoans, arthropods) • “Free living” N2-fixers thrive in the rhizosphere of some grass species SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

  27. RINGKASAN • Plant–microbial interactions play key roles in plant nutrient dynamics • Decomposition – • mineralization, nitrification … • immobilization, denitrification … • Rhizosphere – soil foodweb • Mycorrhizae – plant-fungi symbiosis • N fixation – plant-bacteria symbiosis • Highly adapted root morphology and physiology to accommodate these interactions • N cycle, for example, significantly altered by human activities SUMBER: culter.colorado.edu/~kittel/Slides18_13Nv07.ppt‎

More Related