'Gcd' presentation slideshows

Gcd - PowerPoint PPT Presentation


Aritmética Computacional

Aritmética Computacional

Aritmética Computacional. Francisco Rodríguez Henríquez CINVESTAV francisco@cs.cinvestav.mx. Anuncios Importantes. 1 examen 30 puntos Proyecto: propuesta, avance y Presentación 70 puntos Quizzes [ 1punto cada uno ].

By elina
(217 views)

Ancient Wisdom: Primes, Continued Fractions, The Golden Ratio, and Euclid’s GCD

Ancient Wisdom: Primes, Continued Fractions, The Golden Ratio, and Euclid’s GCD

Ancient Wisdom: Primes, Continued Fractions, The Golden Ratio, and Euclid’s GCD. Definition: A number > 1 is prime if it has no other factors, besides 1 and itself. Each number can be factored into primes in a unique way. [Euclid].

By walden
(228 views)

第十章 數論演算法

第十章 數論演算法

第十章 數論演算法. 10.1 數論回顧 (Number Theory Review) 10.1.1 合成數與質數 10.1.2 最大公因數 10.1.3 質因數分解 10.1.4 最小公倍數 10.2 計算最大公因數 10.2.1 歐幾里得演算法 10.2.2 歐幾里得演算法的擴充. 10.3 模演算的回顧 10.3.1 群論 10.3.2 在模 n 同餘 10.3.3 子群 10.4 解模線性方程 10.5 計算模冪次 10.6 尋找大質數 10.6.1 搜尋大質數 10.6.2 檢驗數值是否為質數 10.7 RSA 加密系統

By ena
(165 views)

CS/ECE Advanced Network Security Dr. Attila Altay Yavuz

CS/ECE Advanced Network Security Dr. Attila Altay Yavuz

CS/ECE Advanced Network Security Dr. Attila Altay Yavuz. Topic 4 Basic Number Theory Credit: Prof. Dr. Peng Ning. Fall 2014. Outline. GCD Totient (Euler-Phi), relative primes Euclid and Extended Euclid Algorithm Little Fermat, Generalized Fermat Theorem

By thane
(86 views)

Math

Math

Math. b y music960633. 課程內容. 0. 幾件重要的事情 1. 最大公因數 2 . 質數 3 . 因數分解 4. 排容 原理 5. Homework. 幾件重要的事情. 1. int 的範圍 - 2 31 ~ 2 31 -1 -2147483648 ~ 2147483647 ( 最好背一下 ) 2. long long 的範圍 - 2 63 ~ 2 63 -1 - 9223372036854775808 ~ 9223372036854775807 約 -10 19 ~ 10 19

By zamora
(139 views)

2-Hardware Design Basics of Embedded Processors

2-Hardware Design Basics of Embedded Processors

2-Hardware Design Basics of Embedded Processors. Outline. Introduction Combinational logic Sequential logic Custom single-purpose processor design RT-level custom single-purpose processor design. Digital camera chip. CCD. CCD preprocessor. Pixel coprocessor. D2A. A2D. lens.

By aerona
(152 views)

Cryptography and Network Security (CS435)

Cryptography and Network Security (CS435)

Cryptography and Network Security (CS435). Part Five (Math Backgrounds). Modular Arithmetic. define modulo operator “ a mod n ” to be remainder when a is divided by n use the term congruence for: a = b mod n when divided by n, a & b have same remainder eg. 100 = 34 mod 11

By guy
(71 views)

Division and GCD

Division and GCD

Division and GCD. CSC2110 Tutorial 7 Darek Yung. Outline. Self Introduction Announcement Quick Review Example Q & A. Self Introduction. Yung Chun Kong, Darek Responsible for Topics in Number Theory Tutorial 7 – 9 The third class work Office: SHB 115

By zinnia
(100 views)

Contractor Civil Liability Pub 759 Jasmine Miller Marc Numedahl

Contractor Civil Liability Pub 759 Jasmine Miller Marc Numedahl

Contractor Civil Liability Pub 759 Jasmine Miller Marc Numedahl. Agenda. Statement of the Issue History and Context Analysis of the Legal Framework Involved Our Proposal Summary. Issue Statement.

By natan
(86 views)

定理15.8:对 f(x)  F[x],g(x)  F[x], g(x)  0, 存在唯一的 q(x),r(x)  F[x], degr(x)<degg(x) 或 r(x)=0, 使得:

定理15.8:对 f(x)  F[x],g(x)  F[x], g(x)  0, 存在唯一的 q(x),r(x)  F[x], degr(x)<degg(x) 或 r(x)=0, 使得:

定理15.8:对 f(x)  F[x],g(x)  F[x], g(x)  0, 存在唯一的 q(x),r(x)  F[x], degr(x)<degg(x) 或 r(x)=0, 使得: f(x)=g(x)q(x)+r(x)。 当 f(x)=g(x)q(x)+r(x) 中的 r(x)=0 时, 称 f(x) 可被 g(x) 整除,记为 g(x)|f(x), 称 g(x) 为 f(x) 的一个因子, q(x) 为商; r(x) 0 时,称 q(x) 为不完全商,而 r(x) 为余式。

By najwa
(176 views)

이산수학 (Discrete Mathematics) 2.5 정수와 알고리즘 (Integers and Algorithms)

이산수학 (Discrete Mathematics) 2.5 정수와 알고리즘 (Integers and Algorithms)

이산수학 (Discrete Mathematics) 2.5 정수와 알고리즘 (Integers and Algorithms). 2006 년 봄학기 문양세 강원대학교 컴퓨터과학과. Introduction. 2.5 Integers and Algorithms. Base- b representations of integers. ( b 진법 표현 ) Especially: binary, hexadecimal, octal. Also, two’s complement representation (2 의 보수 표현 )

By carsyn
(225 views)

資訊科學數學 9 : Integers, Algorithms & Orders

資訊科學數學 9 : Integers, Algorithms & Orders

資訊科學數學 9 : Integers, Algorithms & Orders. 陳光琦助理教授 (Kuang-Chi Chen) chichen6@mail.tcu.edu.tw. Mini Review Methods. Useful Congruence Theorems. Theorem 1: Let a , b  Z , m  Z + . Then: a  b (mod m )   k  Z a = b + km .

By donagh
(122 views)

Discrete Mathematics

Discrete Mathematics

Discrete Mathematics. University of Jazeera College of Information Technology & Design Khulood Ghazal. Integers & Algorithms. Euclidean Algorithm for GCD. Finding GCDs by comparing prime factorizations can be difficult if the prime factors are unknown.

By nelson
(92 views)

Module #8: Basic Number Theory

Module #8: Basic Number Theory

Bogazici University Department of Computer Engineering C mpE 220 Discrete Mathematics 08. Basic Number Theory Haluk Bingöl. Module #8: Basic Number Theory. Rosen 5 th ed., §§2.4-2.5 ~30 slides, ~2 lectures. The Integers and Division. §2.4: The Integers and Division.

By ervin
(128 views)

Module #8: Basic Number Theory

Module #8: Basic Number Theory

Module #8: Basic Number Theory. Rosen 5 th ed., §§2.4-2.6. Now we will jump to mathematical properties of integers, which are the topics of sections 4,5, and 6. §2.4: The Integers and Division. Of course you already know what the integers are, and what division is…

By maxime
(126 views)

Recursive

Recursive

Recursive. Recursive Definitions. In a recursive definition , an object is defined in terms of itself. We can recursively define sequences , functions and sets. Recursively Defined Sequences. Example: The sequence {a n } of powers of 2 is given by a n = 2 n for n = 0, 1, 2, … .

By eshana
(174 views)

Where is Johnny Ho?

Where is Johnny Ho?

Where is Johnny Ho?. Answer: Italy. Three levels: bronze, silver, gold Starts off in bronze division Do well and be promoted to silver and gold 16 finalists in gold go to USACO training camp 4 chosen for US team to go to IOI 6 contests throughout the year Nov, Dec, Jan, Feb, Mar, Apr.

By osborn
(101 views)

01/29/13

01/29/13

Number Theory: Factors and Primes. 01/29/13. Boats of Saintes -Maries Van Gogh. Discrete Structures (CS 173) Madhusudan Parthasarathy, University of Illinois. Counting, numbers, 1-1 correspondence. Representation of numbers. Unary Roman Positional number systems: Decimal, binary.

By odelia
(150 views)

アルゴリズムとデータ構造

アルゴリズムとデータ構造

アルゴリズムとデータ構造. 第2回アルゴリズムと計算量. 計算量の評価. 計算量の種類 時間計算量 (time complexity) ステップ数 領域計算量 (space complexity) 記憶領域量 ある問題を解くアルゴリズム. 問題例1. 解1. アルゴリズム. 問題例2. 解2. 1つの問題=無限個の問題例の集合. 問題と問題例. GCD (Greatest Common Diviser) [ 最大公約数を求める問題 ] 入力:正整数 a 0 , a 1 出力: a 0 と a 1 の最大公約数. 問題.

By kevyn
(188 views)

Comparative Programming Languages

Comparative Programming Languages

Language Comparison: Scheme, Smalltalk, Python, Ruby, Perl, Prolog, ML, C++/STL, Java. Comparative Programming Languages. Fundamentals of Functional Programming Languages.

By xenia
(161 views)

View Gcd PowerPoint (PPT) presentations online in SlideServe. SlideServe has a very huge collection of Gcd PowerPoint presentations. You can view or download Gcd presentations for your school assignment or business presentation. Browse for the presentations on every topic that you want.