'Ln 3' diaporamas de présentation

Ln 3 - PowerPoint PPT Presentation


第 20 章 f 区元素

第 20 章 f 区元素

第 20 章 f 区元素. 20.1 概述. 20.1.1 基本概念. ( n -2)f 0~14 ( n -1)d 0~1 n s 2. 20.1.2 镧系收缩 :. 镧系元素的原子 ( 离子 ) 半径 , 随着原子序数增大而缩小。. 1. 特点. 原子半径缩小缓慢,相邻元素递减 1pm ,总的缩小 约 14pm 。. 2. 结果. ( 1 ) Y 3+ 半径 88pm 落在 Er 3+ 88.1pm 附近, Y 进入稀土元素。 Sc 半径接近 Lu 3+ ,常与 Y 3+ 共生, Sc 也成为稀土元素。.

By giulia
(124 views)

第二十二章 稀土元素

第二十二章 稀土元素

第二十二章 稀土元素. 57~71号 15个元素位于周期表的,第六周期, IIIB 族,是内过渡元素, f 亚层电子0~14个间,价电子4 f 0~14 5d 0~1 6s 2 , 称为镧系元素;有 La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 它们加上同族的 Sc、Y 等17个元素叫做稀土元素;其中 La、Ce、Pr、Nd、Pm、Sm、Eu 又称为轻稀土, Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Y 称为重稀土。.

By virgil
(186 views)

Exponential & Logarithmic Functions

Exponential & Logarithmic Functions

REVIEW 11.1 – 11.4. Exponential & Logarithmic Functions. Properties of Exponents. OR. Evaluate:. 1.) 2.) 3.) 4.) 5.) 6.) 7.) 8.) 9.) 10.) 11.) 12.). Express using rational exponents:. 1.) 2.) 3.) 4.) 5.) 6.) 7.) 8.) 9.) 10.) 11.) 12.).

By petra
(125 views)

GRANT UNION HIGH SCHOOL

GRANT UNION HIGH SCHOOL

GRANT UNION HIGH SCHOOL. Title I school 2,000 – 2,200 student population 90% of students have free lunch (low social economic status) 40% of student population are English Language Learners (Hispanic; Hmong and Lao refugees)are Special Education

By lane
(81 views)

4.3 Rules of Logarithms

4.3 Rules of Logarithms

4.3 Rules of Logarithms. Objectives: 1. Compare & recall the properties of exponents 2. Deduce the properties of logarithms from/by comparing the properties of exponents 3. Use the properties of logarithms 4. Application Vocabulary: change-of-base formula. Pre-Knowledge

By elin
(195 views)

1988 Carnall, Goodman Rajnak, Rana Ln 3 +

1988 Carnall, Goodman Rajnak, Rana Ln 3 +

1988 Carnall, Goodman Rajnak, Rana Ln 3 +. 20,000 cm -1 500 nm 2.5 eV. Application: Telecommunications. EDFA. Er 3+ emission in silica host. low loss. Auger transfer to free carriers. trap. injection of e-h pairs. carrier recombin-ation. back-transfer.

By geona
(99 views)

Properties of Logarithms

Properties of Logarithms

Properties of Logarithms. If we want to evaluate a logarithm on the calculator, we may need to change the base Ex. Evaluate log 4 25. Properties of Logarithms These apply to all logarithms, not just the common log. Ex. Rewrite in terms of ln 2 and ln 3 a) ln 6 b).

By casey
(352 views)

Number Sequences

Number Sequences

Number Sequences. (chapter 4.1 of the book and chapter 9 of the notes). Lecture 5. ?. overhang. Examples. a 1 , a 2 , a 3 , …, a n , …. General formula. 1,2,3,4,5,6,7,… 1/2, 2/3, 3/4, 4/5,… 1,-1,1,-1,1,-1,… 1,-1/4,1/9,-1/16,1/25,…. Summation. A Telescoping Sum.

By zlhna
(104 views)

5.6 Sum of Geometric Series (1/4)

5.6 Sum of Geometric Series (1/4)

5.6 Sum of Geometric Series (1/4). a(r n -1) r-1. a(1-r n ) 1-r. S n = for |r|>1. S n = for |r|<1. Term Number. First Term. Common Ratio. Sum (add) to n terms. 5.6 Sum of Geometric Series (2/4). Example: Find the sum of the first 10 terms of 2 + 6 + 18 + ….

By kellsie
(144 views)

5.6 Sum of Geometric Series (1/4)

5.6 Sum of Geometric Series (1/4)

5.6 Sum of Geometric Series (1/4). a(r n -1 ) r-1. a(1-r n ) 1-r. S n = for |r|>1. S n = for |r|<1. Term Number. First Term. Common Ratio. Sum (add) to n terms. 5.6 Sum of Geometric Series (2/4). Example: Find the sum of the first 10 terms of 2 + 6 + 18 + ….

By skip
(162 views)

Bell Work

Bell Work

Bell Work. Evaluate using the Properties of Exponents x m * x n = ________ X m = ________ 4. √x = _______ x n (Rewrite with exponent) 3. ( x m ) n = __________. Quick Review of Logs. log b b = ______ ln e= _______ ln 1 = _______. 1. 1. 0.

By quiana
(178 views)

Chapter 4

Chapter 4

Chapter 4. Section 4.6 Exponential and Logarithmic Equations. Chapter 4. Section 4.4 Exponential and Logarithmic Equations. P(t). t P( t). 15. 14. 13. 12. 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. t. 1950. 1960. 1970. 1980. 1990. 2000. 2010. 2020. 2030. 2040. 2050.

By evelyn-stanton
(94 views)

5-Minute Check on Activity 5-14

5-Minute Check on Activity 5-14

5-Minute Check on Activity 5-14. Use the properties of logarithms or your calculator to solve the following equations: 14 = 3e x 3 = (1.04) x 6 = 4(2.2) x 5 = 1.3e 3x. y1 = 3e x y2 = 14 x = 1.54. ln (14/3) = ln e x = x.

By shateque-hernandez
(116 views)

Applied Calculus (MAT 121) Dr. Day 	Monday, March 19 , 2012

Applied Calculus (MAT 121) Dr. Day Monday, March 19 , 2012

Applied Calculus (MAT 121) Dr. Day Monday, March 19 , 2012. Derivatives of Exponential Functions(5.4 ) and Log Functions (5.5) Remember Your Derivative Rules! Derivative Rule for Exponential Functions Derivative Rule for Logarithmic Functions Using and Applying these Derivatives.

By griffin-duffy
(95 views)

Exponential and Logarithmic Equations

Exponential and Logarithmic Equations

Exponential and Logarithmic Equations. 1. Isolate the exponential expression. 2. Take the natural logarithm on both sides of the equation. 3. Simplify using one of the following properties: ln b x = x ln b or ln e x = x . 4. Solve for the variable.

By ariana-jordan
(165 views)

稀土元素

稀土元素

稀土元素. 57~71号 15个元素位于周期表的,第六周期, IIIB 族,是内过渡元素, f 亚层电子0~14个间,价电子4 f 0~14 5d 0~1 6s 2 , 称为镧系元素;有 La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 它们加上同族的 Sc、Y 等17个元素叫做稀土元素;其中 La、Ce、Pr、Nd、Pm、Sm、Eu 又称为轻稀土, Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Y 称为重稀土。.

By lael-harrison
(198 views)

Aim: How do we differentiate the natural logarithmic function?

Aim: How do we differentiate the natural logarithmic function?

Aim: How do we differentiate the natural logarithmic function?. Power Rule. Do Now:. Exponential example. y = 2 x. Inverse of Exponential example. x = 2 y. Logarithmic example. y = log 2 x. Inverse Exponential Function. Exponential Equation. y = b x. Logarithm = Exponent y = b x

By montana-griffith
(175 views)

9.5 Exponential Equations & Inequalities

9.5 Exponential Equations & Inequalities

9.5 Exponential Equations & Inequalities. Logarithmic vocabulary Consider: log 260 Also: log 0.26 Ex 1) Underline the mantissa & circle the characteristic log 425 = 2.6284 If we are given log x or ln x , we can find x using our calculators.

By vittorio-poyntz
(138 views)

2012 pre-test

2012 pre-test

2012 pre-test. 8. y = x + 3. (6 + 8). 2. 2. y = x. 2. 1. Find the area of the region bounded by y=x+3, the x -axis, x =3 and x =5. 6. 5 - 4 - 3 - 2 - 1 - 0. | | | | | | 1 2 3 4 5. 5. 3. 2.

By betsyp
(1 views)

About OMICS Group

About OMICS Group

About OMICS Group.

By lavalley
(0 views)

View Ln 3 PowerPoint (PPT) presentations online in SlideServe. SlideServe has a very huge collection of Ln 3 PowerPoint presentations. You can view or download Ln 3 presentations for your school assignment or business presentation. Browse for the presentations on every topic that you want.