1 / 47

Multiple ionization including post-collisional contributions

Multiple ionization including post-collisional contributions. Claudia Montanari. Instituto de Astronomía y Física del Espacio Buenos Aires, Argentina. H + + Kr. -18. 10. sec. projectile. photon. 3+. photon. 10 -15 sec. -5. 10. sec. 6+. PCI=time delayed electron emision

Télécharger la présentation

Multiple ionization including post-collisional contributions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multiple ionization including post-collisional contributions Claudia Montanari Instituto de Astronomía y Física del Espacio Buenos Aires, Argentina

  2. H+ + Kr

  3. -18 10 sec projectile

  4. photon 3+ photon 10-15 sec

  5. -5 10 sec 6+ PCI=time delayed electron emision Independent of the projectile Multiple ionization data includes PCI

  6. ò s = p 2 b P ( b ) db q q Multinomial distribution æ ö N N å Õ ç ÷ - i = - q N q P ( b ) p ( 1 p ) i i i ç ÷ q i i q è ø + + + = q q ... q i 1 i = q 1 2 N ionization probability per electron pi(b), of the i-subshell Direct multiple ionization Cross section for ionization of q target electrons Independent particle model (IPM)

  7. CDW-EIS • Angular expansion in spherical harmonics • The radial Scrödinger eq. is numericallly solved • initial bound • final continuum states • Ortogonality, asymptotic condicions • T-matrix expanded in Fourier series • Projectile: • Hartree-Fock • positive ions First Born æ ö N N å Õ ç ÷ - i = - q N q P ( b ) p ( 1 p ) i i i ç ÷ q i i q è ø + + + = q q ... q i 1 i = q 1 2 N Miraglia & Gravielle Phys Rev A 78 (2008) Multinomial distribution

  8. Sn Fi,n= 1 æ ö N N å Õ ç ÷ i = P ( b ) ( pix1)qi - - N q ç ÷ ( 1 p ) i i q q i è ø + + + = = q q ... q q i 1 i 1 2 N Multiple ionization including PCI Multinomial distribution

  9. no of Auger electrons Single ionization of an electron in the subshellm Fm,n SnFm,n = 1 Krause & Carlson in the 60s Landers et al 2009, Phys. Rev Lett Brünken et al 2002, Phys. Rev A Tamenori et al 2004, J. Phys. B Hikosaka et al 2004, Phys. Rev. A Hayaishi et al 2002, J.Phys. B

  10. no of Auger electrons Single ionization of an electron in the subshellm Fm,n SnFm,n = 1 Ar 3p 3s 3p-2 3s-1 L-shell 0.81 0.112 0.008 0.00 0.00 Krause & Carlson in the 60s Landers et al 2009, Phys. Rev Lett Brünken et al 2002, Phys. Rev A PCI of valence electrons ? Tamenori et al 2004, J. Phys. B Hikosaka et al 2004, Phys. Rev. A Hayaishi et al 2002, J.Phys. B

  11. Sn Fi,n= 1 æ ö N N å Õ ç ÷ i = P ( b ) ( pix1)qi - - N q ç ÷ ( 1 p ) i i q q i è ø + + + = = q q ... q q i 1 i 1 2 N Multiple ionization including PCI Multinomial distribution

  12. Sn Fi,n= 1 æ ö N N å Õ ç ÷ i = P ( b ) ( pi SnFi,n)qi - - N q ç ÷ ( 1 p ) i i q q i è ø + + + = = q q ... q q i 1 i 1 2 N PCI Pa (b)= SP P PCI (ai) including PCI a1s + a2s + …= a i Number of total emitted electron (direct+PCI) Multiple ionization including PCI Multinomial distribution

  13. Results E= (0.1-10) MeV/amu Xe Kr Ar Ne

  14. +2 Li2+, Be2+ Results E= (0.1-10) MeV/amu Xe Kr Ar Ne +1 H+,He+ +3 +2 Be3+, B3+ He2+ B2+ Li3+

  15. H+ + Xe

  16. H+ + Kr

  17. He+ + Kr

  18. He+2 + Kr

  19. H+ + Ar

  20. H+ + Ar

  21. He+ + Ar

  22. He+2 + Ar

  23. He+2 + Ar

  24. K-shell PCI H+ + Ne

  25. 2s & 2p – PCI ? Shake-off ? H+ + Ne Carlson & Nestor (1973) Kochur et al (2006)

  26. H+ + Ne

  27. H+ + Ne

  28. He2+ + Ne

  29. He2+ + Ne

  30. B2+ + Ne

  31. B2+

  32. B2+

  33. B2+

  34. Ion effective charge for multiple ionization

  35. Summary • Multiple ionization cross sections, independent particle model, multinomial distribution, CDW-EIS • PCI is included using photoionization branching ratios. • Good description of Ar, Kr and Xe targets. Overestimation of Ne in the intermediate energy region (direct ionization) • Effective ion charge for multiple ionization, lower for single than for multiple • Open questions that deserve research • +Limits of the IPM?: Multinomial statistic? Importance of correlation? Changes in the target potential? Why a different answer for Ne and Kr? • +Other PCI contributions in Ne, shake off? Again, why a different answer for Ne and Kr? • More experimental data is neededfor different ions in gases

  36. Universidad Federal de Rio de Janeiro, Rio de Janeiro, Brasil • Eduardo Montenegro • Wania Wolf • Hugo Luna • Antonio Santos Instituto de Astronomia y Física del Espacio, Buenos Aires, Argentina • Maria Silvia Gravielle • Diego Arbo • Dario Mitnik • Claudio Archubi • Jorge Miraglia • Dep Physics, University of Missouri, USA • Robert DuBois

  37. Thank you

  38. Carlson & Nestor (1973) Mukoshama (1989) Kochur et al (2006)

  39. He+ + Xe

  40. He+ + Ne

  41. He+ + Ne

  42. Total ionization cross section Miraglia and Gravielle, Phys. Rev A 81 (2010) 042709

More Related