1 / 32

Gazdaságstatisztika

Gazdaságstatisztika. 1 5 . előadás. Gazdaságstatisztika. FELADATOK AZ ELMÉLETI ELOSZLÁSOK TÉMAKÖRÉBŐL. 1. Feladat.

shubha
Télécharger la présentation

Gazdaságstatisztika

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gazdaságstatisztika 15. előadás

  2. Gazdaságstatisztika FELADATOK AZ ELMÉLETI ELOSZLÁSOK TÉMAKÖRÉBŐL

  3. 1. Feladat • Egy gépgyárban készített tengelyekkel kapcsolatban az a tapasztalat, hogy 5%-uk nem felel meg a minőségi elvárásoknak. Mekkora a valószínűsége annak, hogy véletlenül kiválasztott 5 tengely közül • a.) mindegyik megfelel a minőségi elvárásoknak? • b.) egyik sem felel meg a minőségi elvárásoknak? • c.) legalább 4 megfelel a minőségi elvárásoknak? Gazdaságstatisztika

  4. 1. Feladat - megoldás • Jelentse a nem megfelelő termékek számát a kiválasztott 5 termékből. binomiális eloszlású. 5% nem felel meg => • a.) mindegyik megfelel a minőségi elvárásoknak  0 db nem megfelelő van • 0,7738 annak a valószínűsége, hogy a kiválasztott 5 tengely közül mindegyik megfelel a minőségi elvárásoknak. • b.) egyik sem felel meg a minőségi elvárásoknak  • Közel 0 annak a valószínűsége, hogy a kiválasztott 5 tengely közül egyik sem felel meg az elvárásoknak. • c.) legalább 4 megfelel a minőségi elvárásoknak  legfeljebb 1 nem felel meg a minőségi elvárásoknak  • 0,9774 annak a valószínűsége, hogy a kiválasztott 5 tengely közül legalább 4 megfelel a minőségi elvárásoknak. Gazdaságstatisztika

  5. 2. Feladat • Egy mobilszolgáltatónál elvégzett vizsgálatok azt mutatták, hogy 200 nap alatt átlagosan 40 alkalommal történik váratlan kimaradás a szolgáltatásban. Mekkora a valószínűsége annak, hogy 10 nap alatt • a.) 1 kimaradás történik a szolgáltatásban? • b.) történik kimaradás a szolgáltatásban? • c.) legfeljebb1 kimaradás történik a szolgáltatásban? Gazdaságstatisztika

  6. 2. Feladat - megoldás • Mivel 200 nap alatt átlagosan 40 alkalommal történik szolgáltatás-kimaradás ezért 10 nap alatt várhatóan 2 alkalommal történik szolgáltatás-kimaradás. (p=10/200 = 0,05 a szolgáltatás-kimaradás valószínűsége.) • Ez alapján a 10 nap alatt bekövetkező szolgáltatás-kimaradások számáról feltételezhetjük, hogy Poisson-eloszlású valószínűségi változó várható értékkel. • a.) 1 kimaradás történik a szolgáltatásban (10 nap alatt)? • 0,2707 a valószínűsége annak, hogy 10 nap alatt 1 szolgáltatás-kimaradás történik. • b.) történik kimaradás a szolgáltatásban (10 nap alatt)? • 0,8647 a valószínűsége annak, hogy 10 nap alatt történik szolgáltatás-kimaradás. Gazdaságstatisztika

  7. 2. Feladat - megoldás • c.) legfeljebb 1 kimaradás történik a szolgáltatásban (10 nap alatt)? • 0,4060 a valószínűsége annak, hogy 10 nap alatt legfeljebb 1 szolgáltatás-kimaradás történik. Gazdaságstatisztika

  8. 3. Feladat • Egy fodrászatban a vendégek által várakozással eltöltött időről kimutatták, hogy exponenciális eloszlású. További vizsgálatok azt mutatták, hogy az átlagos várakozási idő 20 perc. Mekkora a valószínűsége annak, hogy egy vendég • a.) 10 percnél rövidebb ideig várakozik? • b.) pontosan 5 percig várakozik? • c.) 10 percnél hosszabb, de 20 percnél rövidebb ideig várakozik? Gazdaságstatisztika

  9. 3. Feladat - megoldás • Legyen a valószínűségi változó a várakozással eltöltött idő. Az átlagos várakozási idő 20 perc, ezért perc. • Tudjuk, hogy , így 1/perc. • a.) 10-percnél rövidebb ideig várakozik? • 0,3935 a valószínűsége annak, hogy egy vendég 10 percnél rövidebb ideig várakozik. • b.) pontosan 5 percig várakozik? • 0 a valószínűsége annak, hogy egy vendég pontosan 5 percig várakozik. • c.) 10 percnél hosszabb, de 20 percnél rövidebb ideig várakozik? • 0,2386 a valószínűsége annak, hogy egy vendég 10 percnél hosszabb, de 20 percnél rövidebb ideig várakozik Gazdaságstatisztika

  10. 4. Feladat • Egy palackozóüzemben a palackozott sör töltési térfogatát vizsgálták. A vizsgálat során megállapították, hogy a töltési térfogat normális eloszlású valószínűségi változónak tekinthető 510ml várható értékkel és 20ml szórással. Mekkora a valószínűsége annak, hogy egy palack töltési térfogata • a.) 510ml-nél nagyobb? • b.) pontosan 505ml? • c.) 490ml és 500ml közé esik? Gazdaságstatisztika

  11. 4. Feladat - megoldás • Jelölje a töltési térfogatot, mint valószínűségi változót. • Tudjuk, hogy normális eloszlású ml várható értékkel és ml szórással. • Az eloszlás paraméterei: és • a.) Mekkora a valószínűsége annak, hogy egy palack töltési térfogata 510ml-nél nagyobb? • Tudjuk, hogy • Ezért és • 0,5 a valószínűsége annak, hogy a töltési térfogat 510ml-nél nagyobb. Gazdaságstatisztika

  12. 4. Feladat - megoldás • b.) Mekkora a valószínűsége annak, hogy egy palack töltési térfogata pontosan 505ml? • Ennek a valószínűsége nulla, mert folytonos valószínűségi változó. • c.) Mekkora a valószínűsége annak, hogy egy palack töltési térfogata 490ml és 500ml közé esik? • 0,1499 a valószínűsége annak, hogy a töltési térfogat 490ml és 500ml közé esik. Gazdaságstatisztika

  13. 5. Feladat • Egy autógyárban a kiszállított gépkocsikkal kapcsolatos vevői reklamációkat vizsgálták. Azt találták, hogy 10000 gyártott gépkocsi esetén átlagosan 4 autó motorhibás. Mekkora a valószínűsége annak, hogy véletlenszerűen kiválasztott 10000 gépkocsi között • a.) 1 motorhibás autó van? • b.) van motorhibás autó? • c.) legfeljebb 1 motorhibás autó van? Gazdaságstatisztika

  14. 5. Feladat - megoldás • Mivel 10000 gépkocsi között átlagosan 4 motorhibás van, ezért a motor meghibásodása ritka eseménynek tekinthető. • Ezért a 10000 gépkocsi között motorhibás gépkocsik számáról ( ) – mint valószínűségi változóról – feltételezhetjük, hogy Poisson-eloszlású. • Poisson-eloszlású várható értékkel. • a.) 1 motorhibás autó van? • 0,0733 a valószínűsége annak, hogy 10000 autó között 1 motorhibás autó van. • b.) van motorhibás autó? • 0,9817 a valószínűsége annak, hogy 10000 autó között van motorhibás autó. Gazdaságstatisztika

  15. 5. Feladat - megoldás • c.) legfeljebb 1 motorhibás autó van? • 0,0916 a valószínűsége annak, hogy 10000 autó között legfeljebb 1 motorhibás autó van. • Megjegyzés • A feladat a p=4/10000, n=10000 paraméterű binomiális eloszlás felhasználásával is megoldható. Az így adódó eredmények az első 4 tizedesjegyben azonosak a Poisson-eloszlás alkalmazásával adódó eredményekkel. Gazdaságstatisztika

  16. Gazdaságstatisztika FELADATOK A BECSLÉS TÉMAKÖRÉBŐL

  17. 1. Feladat • Egy elektronikai gyártosoron egy alkatrész nyomtatott áramkörre történő beültetési pozíciójának x-irányú koordinátáját vizsgálták. Korábbi elemzésekből ismert, hogy az x-irányú beültetési pozíció normális eloszlású valószínűségi változó 0,03mm szórással. 10 mérést elvégezve az x-irányú beültetési koordináta 10,34mm-re adódott. • a.) Adjunk 95%-os megbízhatósági szintű intervallumbecslést az alkatrész x-irányú beültetési koordinátájának várható értékére! • b.) Legalább hány elemű mintát vegyünk, hogy az alkatrész x-irányú beültetési koordinátájának várható értékét 95% valószínűséggel 0,01mm-nél kisebb eltéréssel tudjuk becsülni? Gazdaságstatisztika

  18. 1. Feladat - megoldás • a.) Az x-irányú beültetési koordináta normális eloszlású ismeretlen várható értékkel és ismert mm elméleti szórással. • Táblázatból: • mm • A várható értékre vonatkozó 95%-os megbízhatósági szintű konfidenciaintervallum: Gazdaságstatisztika

  19. 1. Feladat - megoldás • b.) Aösszefüggésből • Keressük azt az n értéket, amelyre a eltérés valószínűséggel kisebb az előre rögzített értéknél. • Ha n értékét úgy választjuk meg, hogy teljesül, akkor is teljesül. • Tehát a várható érték valószínűséggel -nál kisebb eltéréssel történő becsléséhez szükséges minta nagysága: Gazdaságstatisztika

  20. 1. Feladat - megoldás • b.) Esetünkben • mm • mm • Ahhoz tehát, hogy a várható értéket 95%-os valószínűséggel legfeljebb 0,01mm eltéréssel tudjuk becsülni legalább 35 elemű minta szükséges. Gazdaságstatisztika

  21. 2. Feladat • Egy kávéautomata ellenőrzése során az automata által adagolt eszpresszó kávé térfogatát vizsgálták. Korábbi tapasztalatok alapján az adagolt kávé térfogata normális eloszlású valószínűségi változónak tekinthető. A vizsgálat során 10 mérést végeztek, a mérési eredmények értékei ml-ben a következők voltak: 101; 97; 103; 99; 102; 98; 104; 101; 97; 100. • Adjunk 95%-os megbízhatósági szintű intervallumbecslést az eszpresszó kávé adagolt térfogatára! Gazdaságstatisztika

  22. 2. Feladat - megoldás • Az adagolt kávétérfogat normális eloszlású valószínűségi változó, melynek elméleti várható értékét és elméleti szórását nem ismerjük. • A feladatunk az, hogy 95%-os megbízhatósági szintű konfidencia-intervallumot adjunk a várható értékre. Mivel az elméleti szórás imeretlen, így az következő összefüggsét használhatjuk: • Az mintaátlag: • Az korrigált tapasztalati szórás: Gazdaságstatisztika

  23. 2. Feladat - megoldás • A szabadságfok n-1=9 • A t-eloszlás táblázatából • A 95%-os megbízhatósági szintű konfidencia-intervallum: • Az eszpresszó kávé adagolt térfogata 95%-os valószínűséggel aintervallumba esik. Gazdaságstatisztika

  24. 3. Feladat • Egy forgácsoló üzemben esztergált tengelyek átmérőjét vizsgálták. A vizsgálat során 30 darab tengely átmérőjét mérték meg. A tengelyek átmérőjének a mintából számított átlaga 55mm, korrigált tapasztalati szórása 0,2mm. A tengelyek átmérőjéről feltételezhető, hogy normális eloszlású valószínűségi változó. • Adjunk 99%-os megbízhatósági szintű intervallumbecslést • a.) a tengelyek várható átmérő méretére! • b.) a tengelyek átmérőjének szórására! Gazdaságstatisztika

  25. 3. Feladat - megoldás • 99%-os megbízhatósági szintű intervallumbecslés a • a.) a tengelyek várható átmérő méretére! • A feladat az, hogy 99%-os megbízhatósági szintű konfidencia-intervallumot adjunk egy normális eloszlású valószínűségi változó várható értékére ismeretlen elméleti szórás esetén. • A mintából számított átlag: mm • A mintából számított korrigált tapasztalati szórás: mm • , n-1=30-1=29 • A t-eloszlás táblázatából: • A keresett konfidencia-intervallum: Gazdaságstatisztika

  26. 3. Feladat - megoldás • 99%-os megbízhatósági szintű intervallumbecslés a • b.) a tengelyek átmérőjének szórására! • A feladat az, hogy 99%-os megbízhatósági szintű konfidencia-intervallumot adjunk egy normális eloszlású valószínűségi változó várható szórására. • mm, , n-1=30-1=29 • A khi-négyzet eloszlás táblázatából: • A szórásnégyzetre vonatkozó konfidencia-intervallum: • A szórásra vonatkozó konfidencia-intervallum: Gazdaságstatisztika

  27. 4. Feladat • Megbízhatósági elemzések során a 60W-os izzók élettartamát vizsgálták. Összesen 60 darab izzó élettartamát figyelték meg, a megfigyelések eredményeit az alábbi gyakorisági táblázatban rögzítették. Az izzók élettartamáról feltételezhető, hogy normális eloszlást követ. • Adjunk 95%-os megbízhatósági szintű intervallumbecslést az izzók várható élettartamára! Gazdaságstatisztika

  28. 4. Feladat - megoldás • Az izzók élettartamáról tudjuk, hogy normális eloszlású valószínűségi változónak tekinthető, ismeretlen várható értékkel és ismeretlen szórással. • A feladatunk az, hogy a várható értékre adjunk 95%-os megbízhatósági szintű konfidencia-intervallumot. Mivel az elméleti szórás ismeretlen, így a következő összefüggést használhatjuk. • Az átlagot a gyakorisági táblázatból a leíró statisztikából ismert módon számítjuk: Gazdaságstatisztika

  29. 4. Feladat - megoldás • Az korrigált tapasztalati szórást a gyakorisági táblázatból a leíró statisztikából ismert módon számítjuk: • , a szabadságfok n-1=59 • A t-eloszlás táblázatából: • A 95%-os megbízhatósági szintű konfidencia-intervallum: • Az izzók várható élettartama 95%-os valószínűséggel a (15,4186 hónap; 18,9814 hónap) intervallumba esik. Gazdaságstatisztika

  30. 5. Feladat • Megbízhatósági elemzések során a 60W-os izzók élettartamát vizsgálták. Összesen 60 darab izzó élettartamát figyelték meg, a megfigyelések eredményeit az alábbi gyakorisági táblázatban rögzítették. Az izzók élettartamáról feltételezhető, hogy normális eloszlást követ. • Adjunk 95%-os megbízhatósági szintű intervallumbecslést • a.) a legalább 18 hónap élettartamú izzók arányára! • b.) a 12 hónapnál rövidebb élettartamú izzók arányára! Gazdaságstatisztika

  31. 5. Feladat - megoldás • a.) A legalább 18 hónap élettartamú izzók aránya a gyakorisági táblázatból (a konkrét mintából): • Konfidencia-intervallum a sokasági arányra: • Táblázatból: • A 95%-os konfidencia-intervallum: • A legalább 18 hónap élettartamú izzók aránya 95%-os valószínűséggel a (0,3735; 0,6265) intervallumba esik. Gazdaságstatisztika

  32. 5. Feladat - megoldás • b.) A 12 hónapnál rövidebb élettartamú izzók arányára a gyakorisági táblázatból (a konkrét mintából): • Konfidencia-intervallum a sokasági arányra: • Táblázatból: • A 95%-os konfidencia-intervallum: • A 12 hónapnál rövidebb élettartamú izzók aránya 95%-os valószínűséggel a (0,0988; 0,3012) intervallumba esik. Gazdaságstatisztika

More Related