1 / 36

Mixed layer heat and freshwater budgets : Improvements during TACE

Mixed layer heat and freshwater budgets : Improvements during TACE. Rebecca Hummels 1 , Marcus Dengler 1 , Peter Brandt 1 , Michael Schlundt 1 1 GEOMAR Helmholtz Zentrum für Ozeanforschung, Kiel, Germany. Ocean Sciences Meeting 2014, Honolulu, Hawaii USA, 26.02.2014.

Télécharger la présentation

Mixed layer heat and freshwater budgets : Improvements during TACE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mixed layerheatandfreshwaterbudgets:Improvementsduring TACE Rebecca Hummels1, Marcus Dengler1, Peter Brandt1, Michael Schlundt1 1GEOMAR Helmholtz Zentrum für Ozeanforschung, Kiel, Germany Ocean Sciences Meeting 2014, Honolulu, Hawaii USA, 26.02.2014

  2. Motivation: Whylookat Mixed Layer (ML) heatbudgets in Tropics?    Annual-meanheatfluxthroughseasurfacecalculatedfromthe ECMWF 40-year reanalysis (Kallberg et al., 2005) Annual-meanSeaSurfaceTemperature (SST) from TMI satelliteobservations

  3. Motivation: SST variability in theAtlanticColdTongue (ACT) Whichprocessesdriveseasonal SST variability ? Interannualvariabilityof ACT SSTs istiedtointerannualvariations in rainfallovertheadjacentcontinents

  4. Motivation: Mixedlayerheatbudget individual contributions toheatbalance Sumandlocal storage • Contributionsto residual: • coarseresolutionofsurfacevelocityclimatology • baddatacoveragefor relative humidity • neglectionof diapycnal heatflux out oftheML Foltz et. al 2003

  5. Observationalprogram • repetitive microstructuresectionswithinthecoldtongueregion: 11 cruisesduring different seasons • individual stationswithat least 3 profiles (>2000 profiles) • shipboard ADCP measurements

  6. Data Treatment From MSS measurementstodiapycnalheatfluxes CTD sensors  T, C, p  Shear sensors  Dissipation rate of turbulent kinetic energy for isotropic turbulence is given by: Eddy diffusivities for mass can be estimated as: (Osborn, 1980) (Osborn and Cox, 1972)

  7. Background settingswithinthe ACT nSEC cSEC EUC 3°S-1.5°N(equatorial ACT): • elevatedshearlevels(due to strong currents (EUC,cSEC,nSEC) • enhanceddissipationratesbelow MLD 10°S-4°S (southern ACT): • moderate shearlevels due tothe lack of strong currents • backgrounddissipationratesbelow MLD

  8. Diapycnalheatflux: Layer ofinterest MLD • Divergent profileofdiapycnalheatflux • heatloss due to diapycnal mixingischaracterizedby diapycnal heatflux in thinlayerbelowthe ML • thisvalueisincluded in the ML heatbudget

  9. Mixed layerheatbudget Evaluation atthe 4 PIRATA buoylocationswithinthe ACT 3 phasesof ACT development: • Absence (January-April) • Development (May-August) • Maturephase (September- December) 0°N, 10°W

  10. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss

  11. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss netsurfaceheatflux Warming: Cooling:

  12. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss netsurfaceheatflux Warming: Cooling: zonal and meridional heatadvection

  13. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss netsurfaceheatflux , eddyadvection Warming: Cooling: zonal and meridional heatadvection

  14. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss netsurfaceheatflux , eddyadvection Warming: Cooling: , entrainment zonal and meridional heatadvection

  15. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss netsurfaceheatflux Warming: Cooling: , entrainment zonal and meridional heatadvection , diapycnal

  16. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss netsurfaceheatflux , eddyadvection Warming: Cooling: , entrainment zonal and meridional heatadvection , diapycnal

  17. Mixed layerheatbudget 0°N, 23°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss netsurfaceheatflux , eddyadvection Warming: Cooling: , diapycnal , entrainment zonaland meridional heatadvection

  18. Mixed layerheatbudget 0°N, 10°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss Warming: netsurfaceheatflux, eddyadvection Cooling: zonal and meridional heatadvection, entrainment, diapycnal

  19. Mixed layerheatbudget 0°N, 0°E localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss Warming: netsurfaceheatflux (stronglyreduced), eddyadvection, meridional Cooling: zonal heatadvection, entrainment, diapycnal

  20. Mixed layerheatbudget 10°S, 10°W localstorage = netsurface - advection – eddyadvection - entrainment – diapycnal ML heatloss Warming: eddyadvectionand meridional heatadvection Cooling: netsurfaceheatflux, zonal heatadvection, entrainment, diapycnal

  21. Mixed layerheatbudget 0°N, 23°W 0°N, 10°W 0°N, 0°E 10°S, 10°W • closed ML heatbudgetwithinuncertaintiesduringsampledperiods • diapycnal heatfluxand zonal advectionarethetermsdominatingthecoolingwithintheequatorial ACT

  22. Freshwaterbudget 0°N, 23°W 0°N, 10°W Salinification: E-P>0, entrainment, meridional heatadvectionanddiapycnal saltflux Freshening: eddyadvectionandzonal heatadvection

  23. Freshwaterbudget 0°N, 23°W 0°N, 10°W Salinification: evaporation, entrainment, meridional heatadvectionand diapycnal saltflux Freshening: precipitation, eddyadvectionandzonal heatadvection • during ACT developmentmixedlayersalinityincreases • largestterms: entrainmentand diapycnal saltflux

  24. Summary and Outlook P • improvementofthe ML heatbudget a higherresolvedsurfacevelocityclimatology improvednetsurfaceheatfluxes (TropFlux) estimatesofthe diapycnal ML heatloss • closureofthebudgetswithintheincertaintieswithinthe ACT • identificationofmaincoolingtermsduring ACT development: diapycnal heatflux (partly zonal advection) in theentireequatorial ACT region • furtherrequiredimprovements (speciallyforinvestigationsofinterannualvariabilityof ML budgetcontributions): surfacevelocities resolutionof diapycnal ML heatloss

  25. Uncertainties 0°N, 23°W • Drifterand ARGO (usedhere) • OSCAR • Lumpkin et al., 2005 • choiceofsurfacevelocityproduct • seasonalvariabilityof diapycnal ML heatlossnot sufficientlyresolved

  26. Mixed layerheatbudget 0°N, 23°W 0°N, 10°W 0°N, 0°E 10°W, 10°S Improvements P • closed ML heatbudgetwithinuncertaintiesduringsampledperiods • diapycnal heatfluxand zonal advectionarethetermsdominatingthecoolingwithintheequatorial ACT

  27. Diapycnal ML heatloss: Seasonaland regional variability MLD • HeatlossoftheMLD due to turbulent mixingiselevated : • withintheequatorialregion • in the western equatorial ACT comparedtotheeast • in earlysummercomparedto September and November

  28. Diapycnal ML heatloss: Seasonaland regional variability MLD • HeatlossoftheMLD due to turbulent mixingiselevated : • withintheequatorialregion • in the western equatorial ACT comparedtotheeast

  29. Diapycnal ML heatloss: Seasonaland regional variability MLD • HeatlossoftheMLD due to turbulent mixingiselevated : • withintheequatorialregion • in the western equatorial ACT comparedtotheeast • in earlysummercomparedto September and November

  30. Uncertainties Comparisonof zonal and meridional velocityof different surfacevelocityproducts

  31. Parametrization

  32. Parametrization Existingparametrizationschemesfortheequatorialregionarebased on a simple Ri (N²/S²) dependence: • PacanowskiandPhilander 1981 • Peters 1988 (2 different formulations) • KPP (Large et al 1994) • ZaronandMoum 2009 (2 different formulations) • Propose a simple dependencefittedtotheobservationaldataofthisstudy

  33. Parametrization 10°W, 0°N Parametrizations N²,S²  Ri  K 

  34. Parametrization MLD  Most existingparametrizationschemesclearyoverestimatetheheatlossofthemixedlayer due todiapycnalmixing  Seasonalparametrizedheatlossbased on independentdatasetwithnewfit isclosesttoobservations

  35. Parametrization 10°W, 0°N All individual termsofthemixedlayerheatbudgetat 10°W on theequatorareestimatedfromobservationsofthe PIRATA buoyandclimatologicalproducts

More Related