Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Methods that Circumvent the Second Law of Thermodynamics Maxwell’s Demon: the Proell effect PowerPoint Presentation
Download Presentation
Methods that Circumvent the Second Law of Thermodynamics Maxwell’s Demon: the Proell effect

Methods that Circumvent the Second Law of Thermodynamics Maxwell’s Demon: the Proell effect

58 Vues Download Presentation
Télécharger la présentation

Methods that Circumvent the Second Law of Thermodynamics Maxwell’s Demon: the Proell effect

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Methods that Circumvent the Second Law of Thermodynamics Maxwell’s Demon: the Proell effect Atmospheric gravity separator: Chas. Steinmetz @ GE Asymmetrical mechanical processes: Herb Johnson Asymmetrical atomic processes: thermoelectrics, Daniel Sheehan at the University of San Diego Asymmetrical atomic processes: superconductivity, Peter Keefe at the University of Detroit Mercy Asymmetrical atomic processes: inverted populations of phase space, Steven Smith’s magnetothermodynamics @ www.geocities.com/electrogravitics Asymmetrical atomic processes: infrared photovoltaics Gibbs Free Energy changes: G = H – TS

  2. Methods that Circumvent the Second Law of Thermodynamics Maxwell’s Demon: the Proell effect Atmospheric gravity separator: Chas. Steinmetz @ GE Asymmetrical mechanical processes: Herb Johnson Asymmetrical atomic processes: thermoelectrics, Daniel Sheehan at the University of San Diego Asymmetrical atomic processes: superconductivity, Peter Keefe at the University of Detroit Mercy Asymmetrical atomic processes: inverted populations of phase space, Steven Smith’s magnetothermodynamics @ www.geocities.com/electrogravitics Asymmetrical atomic processes: infrared photovoltaics Gibbs Free Energy changes: G = H – TS

  3. Methods that Circumvent the Second Law of Thermodynamics Maxwell’s Demon: the Proell effect Atmospheric gravity separator: Chas. Steinmetz @ GE Asymmetrical mechanical processes: Herb Johnson Asymmetrical atomic processes: thermoelectrics, Daniel Sheehan at the University of San Diego Asymmetrical atomic processes: superconductivity, Peter Keefe at the University of Detroit Mercy Asymmetrical atomic processes: inverted populations of phase space, Steven Smith’s magnetothermodynamics @ www.geocities.com/electrogravitics Asymmetrical atomic processes: infrared photovoltaics Gibbs Free Energy changes: G = H – TS

  4. el