1 / 16

Exam solutions on CULearn . Scores hopefully by tomorrow and booklets returned next week.

Announcements. Exam solutions on CULearn . Scores hopefully by tomorrow and booklets returned next week. Read Ch. 6 (Work & Energy): Entire chapter. Read ahead Ch. 7 (Momentum): Ch. 7.1 – 7.6, 7.8. CAPA assignment #8 is due Friday at 10 pm

svea
Télécharger la présentation

Exam solutions on CULearn . Scores hopefully by tomorrow and booklets returned next week.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Announcements • Exam solutions on CULearn. Scores hopefully by tomorrow and booklets returned next week. • Read Ch. 6 (Work & Energy): Entire chapter. • Read ahead Ch. 7 (Momentum): Ch. 7.1 – 7.6, 7.8. • CAPA assignment #8 is due Friday at 10 pm • This week in Section, Assignment #5: Work & Energy Print and bring to your Lab Section. • Standard Wednesday evening review session tonight • Nagle help room hours today 1:45 – 3:45 pm • Kinney help room hours Thursday 11 am - noon

  2. 1. Work: Component of “specific” force along displacement x displacement 2. Kinetic Energy: KE = 3. Work – Energy Principle: Wnet = WFnet = ΔKE = KEf - KEi (No change in PE, no dissipation.)

  3. 4. Potential energy: PE is the amount of work done on a system by an external force when KE does not change and no heat flows (no friction): ΔPE = Wext when ΔKE = 0 Example: PEgrav= mgy 5. Conservation of “Mechanical Energy”: Emechanical = KE + PE = constant (isolated system, no dissipation)

  4. Announcements • Exam solutions on CULearn. Scores hopefully by tomorrow and booklets returned next week. • Read Ch. 6 (Work & Energy): Entire chapter. • Read ahead Ch. 7 (Momentum): Ch. 7.1 – 7.6, 7.8. • CAPA assignment #8 is due Friday at 10 pm • This week in Section, Assignment #5: Work & Energy Print and bring to your Lab Section. • Standard Wednesday evening review session tonight • Nagle help room hours today 1:45 – 3:45 pm • Kinney help room hours Thursday 11 am - noon

  5. 1. Work: Component of “specific” force along displacement x displacement 2. Kinetic Energy: KE = 3. Work – Energy Principle: Wnet = WFnet = ΔKE = KEf - KEi (No change in PE, no dissipation.)

  6. 4. Potential energy: PE is the amount of work done on a system by an external force when KE does not change and no heat flows (no friction): ΔPE = Wext when ΔKE = 0 Example: PEgrav= mgy 5. Conservation of “Mechanical Energy”: Emechanical = KE + PE = constant (isolated system, no dissipation)

  7. Clicker Question Room Frequency BA Consider mass mswinging attached to a string of length L. The swing is released from rest at a height h. What is the speed v of the swing when it reaches height h=0? KE = ½ mv2 PEgrav = mgy

  8. Clicker Question Room Frequency BA A projectile is fired with an initial speed voat an angle θ from the horizontal. What is the KE of the projectile when it is on the way down at a height h above the ground? (Assume no air resistance) Use PE=0 at ground level ½ mvo2 + mgh mgh ½ mvo2 – mgh Impossible to tell.

  9. Clicker Question Room Frequency BA A mass slides down a frictionless ramp of height h. Its initial speed is zero. Its final speed at the bottom of the ramp is v. h As the mass descended, its KE A) increased B) decreased C) remained constant As the mass descended, its PE A) increased B) decreased C) remained constant As the mass descended, its (KE + PE) = total mechanical energy A) increased B) decreased C) remained constant.

  10. Clicker Question Room Frequency BA Mechanical Energy of a system is conserved if there is no dissipation. A physical system with no “dissipation” is one in which: There is no friction. There is friction. No external forces are applied. External forces are applied. Energy is not conserved. Friction results in energy transferred to heat and thus loss of mechanical energy.

  11. Clicker Question Room Frequency BA Mechanical Energy of a system is conserved if the system is isolated. An “isolated” physical system is one in which There is no friction. There is friction. No external forces are applied. External forces are applied. Energy is not conserved. External forces can do work on the system. Thus energy is transferred into or out of the system.

  12. Bowling Ball Demonstration

  13. For the bowling ball to hit me, it would be an example of violation of conservation of energy. PE = ME, KE = 0 (velocity = 0 at turning point) PE = 0, ME = KE (maximum velocity)

  14. Energy transformed into Kinetic Energy

  15. Clicker Question Room Frequency BA A block initially at rest is allowed to slide down a frictionless ramp and attains a speed v at the bottom. How is the initial height h related to the speed at the bottom of the ramp? PE = 0

  16. Clicker Question Room Frequency BA A hockey puck slides without friction along a frozen lake toward an ice ramp and plateau as shown. The speed of the puck is 4 m/s and the height of the plateau is 1 meter. +y 0 Will the puck make it all the way up the ramp? Yes B) No C) Depends on the puck mass ME(initial) = KEi + PEi = ½ mv2 + 0 = (8 x mass) Joules ME(on the plateau) = KEp + PEp = ½ mvp2 + mgh >= (9.8 x mass) Joules Not enough energy to get up the ramp!

More Related