1 / 60

Delta Debugging and Model Checkers for fault localization

Delta Debugging and Model Checkers for fault localization. Amin Alipour. Note: Some slides/figures in this presentations has been used/adapted from presentations by Andreas Zeller, Tevfik Bultan , and Alex Groce . . Outline. Software Fault – some facts Delta debugging

tacy
Télécharger la présentation

Delta Debugging and Model Checkers for fault localization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Delta Debugging and Model Checkers for fault localization Amin Alipour Note: Some slides/figures in this presentations has been used/adapted from presentations by Andreas Zeller, TevfikBultan, and Alex Groce.

  2. Outline • Software Fault – some facts • Delta debugging • Simplifying test cases • Isolating failure inducing parts in test cases • Search in space • Model checking • Background • Distance metrics • Conclusion

  3. Software faults • Software fault/flaw/bug perturbs the state of a program to an error state. • Error state can propagates through the execution of the program and cause a failure. • Failure is manifestation of error.

  4. Software debugging • What we have for debugging? • Program • Set of test cases. • … • For maintainable debugging of failures: • We need to understand the test case/failure. • We need to identify the location of faults. (Fault Localization) Can we automate it?

  5. Approaches to Fault Localization • Program Slicing • Program Spectra • Statistical Reasoning • Delta Debugging • Model Checking

  6. Delta Debugging • Goal: • Removing components irrelevant to the failure from test cases. • It can improve comprehension of the failure. • Delta debugging comes with two techniques: • Simplification (minimization) of test cases, and • Isolation of failure-inducing parts from test cases.

  7. Delta Debugging • Failing test cases are usually cluttered by unnecessary/irrelevant things. ……. <td align=left valign=top><SELECT NAME="op sys" MULTIPLE SIZE=7><OPTION VALUE="All">All<OPTION VALUE="Windows 3.1"> Windows 3.1<OPTIONVALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows 98<OPTION VALUE="Windows ME"> Windows ME<OPTION VALUE="Windows 2000">Windows2000<OPTION VALUE="Windows NT">Windows NT<OPTION VALUE="Mac System 7"> Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="MacSystem 7.6.1">Mac System 7.6.1<OPTION VAL UE="Mac System 8.0">Mac System8.0<OPTION VALUE="Mac System 8.5">Mac System 8.5<OPTION VALUE="Mac System8.6">Mac Syst em 8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTIONVALUE="MacOS X">MacOS X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTIONVALUE="NetBSD">NetBSD<OPTION VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS <OPTION VALUE="HP-UX">HP-UX<OPTIONVALUE="IRIX">IRIX<OPTION VALUE="Neutrino ">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris" >Solaris<OPTIONVALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT></td><td align=left valign=top><SELECT NAME="p riority" MULTIPLE SIZE=7><OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTIONVALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT></td><td align=left valign=top><SELECT NAME="bug severity" MULTIPLE SIZE= 7><OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTIONVALUE="major">major<OPTION VALUE="normal"> normal<OPTIONVALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT></tr> </table> …..

  8. Simplification of test cases • Goal: • Minimizing the size of a failing test case, cF. • cF= 12 ... n • Minimizing test cases requires checking all subset of s. • Delta debugging simplifies a failing test case cF to a 1-minimal test case. • 1-minimal failing test case: • A failing test case is 1-minimal, if any part of it (i) is removed, the failure will disappear.

  9. Simplification Algorithm i = cFi • Test each 1, 2, ... n and each 1, 2, ..., n • There are four possible outcomes • Some i causes failure • Partition i to two and continue with i as the test set • Some i causes failure • Continue with i as the test set with n  1 subsets • No test causes failure • Increase granularity by generating a partition with 2n subsets • The granularity can no longer be increased • Done, found the 1-minimal subset

  10. Simplification- Example Granularity n = 2 n = 4 n = 3 n = 2 n = 4 n = 3

  11. Simplification Example 2 1 <SELECT NAME="priority" MULTIPLE SIZE=7> F 2<SELECT NAME="priority" MULTIPLE SIZE=7>P 3<SELECT NAME="priority" MULTIPLE SIZE=7> P 4<SELECT NAME="priority" MULTIPLE SIZE=7>P 5<SELECT NAME="priority" MULTIPLE SIZE=7>F 6<SELECT NAME="priority" MULTIPLE SIZE=7>F 7 <SELECT NAME="priority" MULTIPLE SIZE=7> P 8<SELECT NAME="priority" MULTIPLE SIZE=7>P 9 <SELECT NAME="priority" MULTIPLE SIZE=7>P 10<SELECT NAME="priority" MULTIPLE SIZE=7>F 11<SELECT NAME="priority" MULTIPLE SIZE=7> P 12<SELECT NAME="priority" MULTIPLE SIZE=7>P 13<SELECT NAME="priority" MULTIPLE SIZE=7>P

  12. Simplification Example 2-cont’d 14<SELECT NAME="priority" MULTIPLE SIZE=7>P 15<SELECT NAME="priority" MULTIPLE SIZE=7>P 16<SELECTNAME="priority" MULTIPLE SIZE=7>F 17<SELECT NAME="priority" MULTIPLE SIZE=7>F 18<SELECTNAME="priority" MULTIPLE SIZE=7>F 19<SELECTNAME="priority" MULTIPLE SIZE=7>P 20<SELECTNAME="priority" MULTIPLE SIZE=7>P 21<SELECTNAME="priority" MULTIPLE SIZE=7>P 22<SELECTNAME="priority" MULTIPLE SIZE=7>P 23<SELECTNAME="priority" MULTIPLE SIZE=7>P 24<SELECTNAME="priority" MULTIPLE SIZE=7>P 25<SELECT NAME="priority" MULTIPLE SIZE=7>P 26<SELECT NAME="priority" MULTIPLE SIZE=7>F

  13. ……. <td align=left valign=top><SELECT NAME="op sys" MULTIPLE SIZE=7><OPTION VALUE="All">All<OPTION VALUE="Windows 3.1"> Windows 3.1<OPTIONVALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows 98<OPTION VALUE="Windows ME"> Windows ME<OPTION VALUE="Windows 2000">Windows2000<OPTION VALUE="Windows NT">Windows NT<OPTION VALUE="Mac System 7"> Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="MacSystem 7.6.1">Mac System 7.6.1<OPTION VAL UE="Mac System 8.0">Mac System8.0<OPTION VALUE="Mac System 8.5">Mac System 8.5<OPTION VALUE="Mac System8.6">Mac Syst em 8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTIONVALUE="MacOS X">MacOS X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTIONVALUE="NetBSD">NetBSD<OPTION VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS <OPTION VALUE="HP-UX">HP-UX<OPTIONVALUE="IRIX">IRIX<OPTION VALUE="Neutrino ">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris" >Solaris<OPTIONVALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT></td><td align=left valign=top><SELECT NAME="p riority" MULTIPLE SIZE=7><OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTIONVALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT></td><td align=left valign=top><SELECT NAME="bug severity" MULTIPLE SIZE= 7><OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTIONVALUE="major">major<OPTION VALUE="normal"> normal<OPTIONVALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT></tr> </table> ….. Simplification <SELECT>

  14. Isolation of Failure-inducing part from test case • Even in minimal test cases, there are still some elements in the minimal test case that are not directly related to the failure. • E.g., a minimal test case for a C compiler, still needs to have some symbols like: {,}, or variable declarations for the validity of test input that might be irrelevant to the failure. #define SIZE 20 Double mult(double z[], int n) { inti, j; i = 0; for(j=0;j<n);j++){ i = i + j + 1; z[i] = z[i]*(z[0] + 1.0); } return z[n]; }

  15. Isolation of Failure-inducing part from a test case • How to isolate failure-related parts? • Find a pair of passing and failing input that are very similar and contrast them. Passing Test Case Failing Test Case #define SIZE 20 Double mult(double z[], int n) { inti, j; i = 0; for(j=0;j<n);j++){ i + j + 1; z[i] = z[i]*(z[0] + 1.0); } return z[n]; } #define SIZE 20 Double mult(double z[], int n) { inti, j; i = 0; for(j=0;j<n);j++){ i = i + j + 1; z[i] = z[i]*(z[0] + 1.0); } return z[n]; }

  16. Isolation Algorithm • Narrow down the gap between passing and failing test case, by removing their differences and making them more similar.

  17. Isolation Example 2 <SELECT NAME="priority" MULTIPLE SIZE=7>F 4 <SELECT NAME="priority" MULTIPLE SIZE=7>F 7<SELECT NAME="priority" MULTIPLE SIZE=7>P 6<SELECT NAME="priority" MULTIPLE SIZE=7>P 5<SELECT NAME="priority" MULTIPLE SIZE=7>P 3<SELECT NAME="priority" MULTIPLE SIZE=7>P 1 <SELECT NAME="priority" MULTIPLE SIZE=7>P

  18. Cause for a failure Can we use the isolation technique to find causes of the failure?

  19. Cause for a failure - example

  20. cause of a failure - example

  21. Cause Transitions Cause rp rf a l1 a l2 a li b L1+1 Cause Transition b lj c Lj+1

  22. Discussion on delta debugging • It scales well. • It requires minimal information about the program and its specification. • There are several extensions to it: • Hierarchal Delta debugging • Isolating schedules in concurrent systems. • Isolating failure-inducing changes in repositories.

  23. Model Checkers for fault localization

  24. Model Checking Problem Satisfied Program/Model Model Checker Counter-example Specification/ assertions

  25. Fault Localization with Model Checkers • Model Checkers can perform different queries on program paths and states. • These queries can be used for fault localization: • Contrasting • Distance Metrics • Max-SAT

  26. Explanation with Distance Metrics • How it’s done: First, the program (P) and specification (spec) are sent to the model checker. Model checker P+spec

  27. Explanation with Distance Metrics • How it’s done: The model checker finds a counterexample, C. Model checker C P+spec

  28. Explanation with Distance Metrics • How it’s done: The explanation tool uses P, spec, and C to generate (via Bounded Model Checking) a formula with solutions that are executions of P that are not counterexamples Model checker C P+spec BMC/constraint generator

  29. Explanation with Distance Metrics • How it’s done: Constraints are added to this formula for an optimization problem: find a solution that is as similar to C as possible, by the distance metric d. The formula + optimization problem is S Model checker C P+spec BMC/constraint generator S

  30. Explanation with Distance Metrics • How it’s done: An optimization tool (PBS, the Pseudo-Boolean Solver) finds a solution to S: an execution of P that is not a counterexample, and is as similar as possible to C: call this execution -C Model checker C P+spec BMC/constraint generator S -C Optimization tool

  31. Explanation with Distance Metrics Report the differences (s) between C and –C to the user: explanation and fault localization Model checker C P+spec C BMC/constraint generator s -C S -C Optimization tool

  32. “SSA” Transformation int main () { int x, y; int z = y; if (x > 0) y--; else y++; z++; assert (y == z); } int main () { int x0, y0; int z0 = y0; y1 = y0 - 1; y2 = y0 + 1; guard1 = x0 > 0; y3 = guard1?y1:y2; z1 = z0 + 1; assert (y3 == z1); }

  33. Transformation to Equations int main () { int x0, y0; int z0 = y0; y1 = y0 - 1; y2 = y0 + 1; guard1 = x0 > 0; y3 = guard1?y1:y2; z1 = z0 + 1; assert (y3 == z1); } (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 == z1)

  34. Transformation to Equations int main () { int x0, y0; int z0 = y0; y1 = y0 - 1; y2 = y0 + 1; guard1 = x0 > 0; y3 = guard1?y1:y2; z1 = z0 + 1; assert (y3 == z1); } (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 == z1) Uninitialized variables in CBMC are unconstrained inputs.

  35. Transformation to Equations int main () { int x0, y0; int z0 = y0; y1 = y0 - 1; y2 = y0 + 1; guard1 = x0 > 0; y3 = guard1?y1:y2; z1 = z0 + 1; assert (y3 == z1); } (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 == z1) CBMC (1) negates the assertion

  36. Transformation to Equations int main () { int x0, y0; int z0 = y0; y1 = y0 - 1; y2 = y0 + 1; guard1 = x0 > 0; y3 = guard1?y1:y2; z1 = z0 + 1; assert (y3 == z1); } (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 != z1) (assertion is now negated)

  37. Transformation to Equations int main () { int x0, y0; int z0 = y0; y1 = y0 - 1; y2 = y0 + 1; guard1 = x0 > 0; y3 = guard1?y1:y2; z1 = z0 + 1; assert (y3 == z1); } (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 != z1) then (2) translates to SAT and usesa fast solver to find a counterexample

  38. Execution Representation (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 != z1) Remove the assertion to get an equation forany execution of the program

  39. Execution Representation Counterexample (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 != z1) x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 Execution represented by assignments toall variables in the equations

  40. Execution Representation Passing Trace (z0 == y0  y1 == y0 – 1  y2 == y0 + 1  guard1 == x0 > 0  y3 == guard1?y1:y2  z1 == z0 + 1  y3 == z1) x0 == 0 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == false y3 == 6 z1 == 6 Use the assertion to find a passing trace.

  41. Execution Representation Counterexample Successful execution x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 x0 == 0 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == false y3 == 6 z1 == 6 Execution represented by assignments toall variables in the equations

  42. The Distance Metric d Counterexample Successful execution x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 x0 == 0 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == false y3 == 6 z1 == 6 d = number of changes (s) between two executions

  43. The Distance Metric d Counterexample Successful execution x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 x0 == 0 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == false y3 == 6 z1 == 6 d = number of changes (s) between two executions

  44. The Distance Metric d Counterexample Successful execution x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 x0 == 0 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == false y3 == 6 z1 == 6  1   d = number of changes (s) between two executions

  45. The Distance Metric d Counterexample Successful execution x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 x0 == 0 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == false y3 == 6 z1 == 6  d = 3   d = number of changes (s) between two executions 3 is the minimum possible distance between thecounterexample and a successful execution

  46. The Distance Metric d New SAT variables Counterexample x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 x0 == (x0 != 1) y0 == (y0 != 5) z0 == (z0 != 5) y1 == (y1 != 4) y2 == (y2 != 6) guard1 == !guard1 y3 == (y3 != 4) z1 == (z1 != 6) To compute the metric, add a new SATvariable for each potential 

  47. The Distance Metric d New SAT variables Counterexample x0 == 1 y0 == 5 z0 == 5 y1 == 4 y2 == 6 guard1 == true y3 == 4 z1 == 6 x0 == (x0 != 1) y0 == (y0 != 5) z0 == (z0 != 5) y1 == (y1 != 4) y2 == (y2 != 6) guard1 == !guard1 y3 == (y3 != 4) z1 == (z1 != 6)  And minimize the sum of the  variables(treated as 0/1 values): a pseudo-Boolean problem

  48. Explanation with Distance Metrics CBMC Model checker C P+spec explain C BMC/constraint generator s -C S -C PBS Optimization tool

  49. Discussion • Usefulness of Fault Localization Techniques • Effectiveness: • Precision: Low false negative • Informative-ness: Enough clue to make a fix or refute • Efficiency: • Performance: It should run within the budget constraints. • Scalability: Ability to run on real size programs. • Information Usage: Making the most of the information available.

  50. Discussion Input Test Cases Suspicious components Fault Localization Program Specification Comments Development History Developers

More Related