1 / 10

CLASE 208

CLASE 208. Grupo de teoremas de Pitágoras (Ejercicios). C. D. G. CDEF es un cuadrado, AC  DE = {G} AF = 8,0 cm y AC = 10 cm. F. E. B. A. En la figura, E y F son puntos de la hipotenusa AB del triángulo rectán -gulo ABC.

tadita
Télécharger la présentation

CLASE 208

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CLASE208 Grupo de teoremas de Pitágoras (Ejercicios)

  2. C D G CDEF es un cuadrado, AC  DE = {G} AF = 8,0 cm y AC = 10 cm. F E B A • En la figura, E y F son puntos de la hipotenusa AB del triángulo rectán -gulo ABC.

  3. Identifica cinco triángulos rectán -gulos. Fundamenta en cada caso. • Prueba que BCF = CDG y FCA  AEG. • Halla la longitud de los segmentos AB, BC y DG. • Halla el área del AEG. • Construye un rectángulo que tenga igual área que el cuadrado CDEF.

  4. C D G F E B A 1.a)

  5. C D G F E B A 1.a)

  6. C D AF = 8,0 cm. AC = 10 cm. G F A E B CF: T. de Pitágoras (AFC) . FB: T. de la altura (ABC) . AB: Por suma de segmentos. BC: T. de Pitágoras o de los catetos (ABC) . DG: Elementos homólogos en trián – gulos iguales (FBC = CDG) . 1.c) Estrategia

  7. C D AF = 8,0 cm. AC = 10 cm. G = (a – b) (a +b) a2 – b2 F E B CF = 6,0 cm A h CF = h FB = q q (T. de Pitágoras) h2 = AC2 – AF2 h2 = (102 – 82) cm2 = 4 ·9 cm2 h2 = 2 ·18 cm2 h = 2 ·3 cm = 6 cm

  8. C D AF = 8,0 cm. AC = 10 cm. CF = h G F E B CF = 6,0 cm h2 = AF q FB = 4,5 cm q 36 9 = 8 2 A AB = h FB = q q (T. de la altura) (6cm)2 = 8 cm q 36 cm2= 8 cm q cm cm = 4,5 cm = 8 cm + 4,5 cm = 12,5 cm

  9. C D AF = 8,0 cm. AC = 10 cm. G FB = q F E B CF = 6,0 cm CB2 = AB  FB FB = 4,5 cm CB2 = 12,5 cm  4,5 cm CB2 = 56,25 cm2 CB = 7,5 cm A 12,5 cm AB = h q (T. de los catetos)

  10. C D h G AAHIF = AF q q E F A B h2 = AF q ACDEF = h2 pero; q (T. de la altura) I H ACDEF = AAHIF Entonces,

More Related