1 / 15

Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation

Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation. Rainer Hörlein. Contributors. LMU / MPQ:. Max-Born-Institute, Berlin, D:. R. Hörlein D. Kiefer G. D. Tsakiris F. Krausz. A. Henig D. Jung P. Heissler D. Habs. S.Steinke T. Sokollik

tamas
Télécharger la présentation

Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein ICUIL 2010 Watkins Glen

  2. Contributors LMU / MPQ: Max-Born-Institute, Berlin, D: • R. Hörlein • D. Kiefer • G. D. Tsakiris • F. Krausz • A. Henig • D. Jung • P. Heissler • D. Habs • S.Steinke • T. Sokollik • M. Schnürer • P. Nickles • W. Sandner Theory and Simulations: • S. Rykovanov • G. D. Tsakiris Los Alamos Nat. Lab, USA: • M. Hegelich • C. Gautier • R. Shah • S. Palaniyappan • S. Letzring • J. Fernandez • and the entire TRIDENT Team Queens University Belfast, UK: • B. Dromey • M. Zepf ICUIL 2010 Watkins Glen

  3. Overview • Introduction • Dynamics of nm-Scale Foils • Plasma Probing using SHHG • 4. Conclusions and Outlook ICUIL 2010 Watkins Glen

  4. 1.1 Coherent Wake Emission Glass Target (Density ≈2.6 g/cm^3): Plexiglass Target (Density ≈ 1.3 g/cm^3): 17 16 15 13 12 11 15 13 12 11 14 14 ICUIL 2010 Watkins Glen

  5. 1.2 Relativistic Harmonics Mirror Motion: Harmonic Spectra: ICUIL 2010 Watkins Glen

  6. 1.3 Thin Foils CWE in transmission: ROM in transmission: H. George, et al., NJP, 11, 113028 (2009) U. Teubner, et al., PRL, 92, 185001, (2004). K. Krushelnick, et al., PRL, 100, 125005, (2008). Experiments: ICUIL 2010 Watkins Glen

  7. 2. Dynamics of nm-Scale Foils nm-scale diamond-like carbon foils promise access to new regimes for efficient ion acceleration • S.G. Rykovanov et al., NJP. 10, 113005 (2008). • O. Klimo et al., PR ST AB 11, 031301 (2008). • Henig et al., PRL 103, 245003 (2009) • andmanyothers Density X ICUIL 2010 Watkins Glen

  8. 2.1 The Berlin Laser System Berlin 30 TW CPA Ti:Sa system • Pulse energy 1.2 J (0.7 J with PM) • Pulse duration 40 fs • Rep. rate10 Hz • F/2.5 focusing • Adaptive mirror • Focused intensity • 5x1019 Wcm-2 Laser focus Double Plasma – Mirror (DPM) • energy throughput ~65% • contrast enhancement 103 to 104 • no decrease in focusability 5 µm FWHM ICUIL 2010 Watkins Glen

  9. 2.2 Probingnm-Foil Targets 32 nm DLC 17 nm DLC 5 nm DLC 15 13 11 10 9 8 7 15 13 11 10 9 8 7 15 13 11 10 9 8 7 14 12 14 12 14 12 Harmonic Order Harmonic Order Harmonic Order ICUIL 2010 Watkins Glen

  10. Measured Density Density during relativistic interaction Consistent with 1D expansion of the foil target ionized on the leading edge of the 45fs laser pulse Cs,av≈2.2x107cm/s TExp ≈70fs 2.2 Probing nm-Foil Targets 2D-PIC Simulation a0=3.6, nmax=100nc, 25nm ramp, τ=10 cycles R. Hörlein et al., arXiv:1009.1582 (2010) ICUIL 2010 Watkins Glen

  11. (very) preliminary Simulations e- density (nc of w0) hollow target 100s of micron radius (microns) harmonic source previous work using gas harmonics for example: W. Theobald et al., PRL 77, 298 (1996). S. Dobosz et al., PRL 95, 025001 (2005). 3. Plasma Probing using SHHG test plasma harmonic target incident laser harmonic radiation 10th harmonic 50th harmonic Harmonic order y-position (microns) y-position (microns) Position on detector (cm) x-position (microns) x-position (microns) ICUIL 2010 Watkins Glen

  12. 3.1 The TRIDENT Laser TRIDENT short pulse beam: • Pulse energy 80 J • 1 shot/45 min. • F/3 focusing • Pulse duration 500 fs • Wavelength 1054 nm • Adaptive mirror • Focused intensity 5x1020 Wcm-2 TRIDENT has ~10x longer pulse than MBI but ~100x more pulse energy i.e. 10x higher intensity on target ICUIL 2010 Watkins Glen

  13. Grazing incidence spectrometer 10 n-2.0 scaling 1 Relative Intensity n-2.75 scaling n-3.5 scaling 0.1 40 20 60 Harmonic Order 3.2 Relativistic Forward Harmonics Harmonic radiation from 200 nm DLC Targets Normal incidence spectrometer 16 13 11 10 9 12 20 18 14 21 19 17 15 Harmonic Order ICUIL 2010 Watkins Glen

  14. Density Information 10 200nm DLC 200+80nm DLC Relative Intensity 1 0.1 40 20 60 Harmonic Order 3.3 Plasma Probing: First Results harmonic target probed foil incident laser residual laser and harmonics ICUIL 2010 Watkins Glen

  15. Conclusions and Outlook • High harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation • High harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets • Direct measurement of target density during relativistic interaction • First clear observation of only odd-numbered relativistic harmonics in normal incidence geometry • High harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments ICUIL 2010 Watkins Glen

More Related