html5-img
1 / 74

CHEMOTHERAPEUTICS OF INFE CTIOUS DISEASES

CHEMOTHERAPEUTICS OF INFE CTIOUS DISEASES. Anton Kohút. Basic terminol o g y. antiba c teri a l spe c trum MI C re s ist a nc e dysmi c r o bia superinfe ction ba c teric i d al e f fe c t ba c teriostatic e f fe c t. Basic criteria for ATB. maxim al mi c robia l toxicit y

tanner
Télécharger la présentation

CHEMOTHERAPEUTICS OF INFE CTIOUS DISEASES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHEMOTHERAPEUTICSOF INFECTIOUSDISEASES Anton Kohút

  2. Basic terminology • antibacterial spectrum • MIC • resistance • dysmicrobia • superinfection • bactericidal effect • bacteriostatic effect

  3. Basic criteria for ATB • maximal microbial toxicity • minimal organ toxicity

  4. Mechanism of ATB action a 3 4 b 1 2 a b

  5. Mechanismsof action • interference with cell wall synthesis (-lactams, vancomycin, cycloserin) • influence of cell membrane (polymyxines) • interference with protein synthesis (CMP, TTC, AMG, macrolides) • interference with nucleic acid metabolism (grizeofulvin, rifampicin, quinolones) • interference with intermediary metabolism (sulfonamides)

  6. ResistanceIs antibiotic resistance inevitable?

  7. Mechanisms of resistance • enzymes • change ofcell wall permeability • ↑synthesis of antagonist(folic acid) • change ofpenicilin-binding protein(PBP) • Resistance to antibiotics occurs through four general mechanisms: target modification; efflux; immunity and bypass; and enzyme-catalyzed destruction

  8. In the past two decades we have witnessed: • the rise of so-called extended spectrum β-lactamases (ESBLs), which are mutants of enzymes that previously could only inactivate penicillins but now have gained activity against many cephalosporins; • carbapenemases such as KPC and NDM-1 that inactivate all β-lactam antibiotics; • •

  9. • plasmid-mediated (and thus horizontally disseminated) resistance to fluoroquinolone antibiotics; • the spread of virulent MRSA (methicillin-resistant Staphylococcus aureus) in the community; • the rise of multi-drug resistant Neisseria gonorrhoea; • the emergence and global dissemination of multi-drug resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterobacteriaceae; • the spread of extensively drug resistant Mycobacterium tuberculosis; • resistance to the two newest antibiotics to be approved for clinical use - daptomycin and linezolid.

  10. The discovery of antibiotic classes

  11. Toxic effects of ATB

  12. Toxic effects of ATB myelosuppresion(CMP) hematotoxicity(sulfonamides) hepatotoxicity(macrolides) nephrotoxicity(aminoglycosides) ototoxicity (aminoglycosides) neurotoxicity(anti-TBC)

  13. Other side effects (SE) allergy(-lactams) dysmicrobia(large spectrum ATB) superinfection (large spectrum ATB) Jarisch-Herxheimer (PNC) sy Hoigné(PNC-retard)

  14. Jarisch-Herxheimer

  15. Combinations of ATB

  16. Combinations of ATB Aims: • increase of therapeutic effect • decrease in SE • prophylaxis of resistance Bacteriostatic (with rapid onset) + bactericidal  NEVER !

  17. Principles of ATB therapy

  18. primary focus inf. possible inf. agent sensitivity variability of pacient´s response kinetics  penetration hospitalisation ATB SE effectiveness of elimination organs start therapy in right time regular dosing optimal ther. period don´t repeat therapy price of ATB Principles of ATB therapy

  19. Bacteria by Site of Infection

  20. Inhibitors of cell wall synhesis-lactams

  21. Alexander Fleming, 1928

  22. Penicillins basic PNC anti-staphyloccocal aminoPNC carboxyPNC acylureidoPNC carbapenems monobactams -lactamase inhib.

  23. Penicillium notatum 6-aminopenicillanic acid penem Penicillins(bactericidal)

  24. benzylpenicilline – PNC G procain-benzyl-PNC benzatine-PNC phenoxymethyl-PNC penamecilline Basic PNC

  25. Natural Penicillins(penicillin G, penicillin VK) Gram-positiveGram-negative pen-susc S. aureusNeisseria sp. pen-susc S. pneumoniae Group streptococciAnaerobes viridans streptococci Above the diaphragm EnterococcusClostridium sp. Other Treponema pallidum (syphilis)

  26. Penicillin G

  27. Mechanism of action • Gram + • peptidoglycane • PBP • lipidic bilayer

  28. Mechanism of action • Gram -  LPS  lipids • membrane  porines • peptidoglycane • PBP • membrane

  29. i.v.benzylpenicilline – PNC G i.m.Pc-PNC, benzatine-PNC extracellular distribution renal excretion of active substance (probenecide) acidostabile incomplete absorption (60%) hydrolytic cleavage, activation, prolonged effect (penamecilline) Pharmacokinetics

  30. PNC a poorly lipid soluble and do not cross the blood brain brain barrier Whey are actively excreted unchanged by the kidney (the dose should be reduced in severe renal failure)  Tubular secretion can be blocked by probenecid to potentiate PNC action

  31. gram + cocci(St. pyogenes, St.viridans, St. pneumoniae) staphylococci (-lactamase-negative) gram + bacilly (B.anthracis, C. diphteriae, L. monocytogenes, C.perfringens  tetani) gram – bacilly(Pasteurella) spirochetes (Treponema) borelia, leptospira(B.anthracis, C. diphteriae, L. monocytogenes, C.perfringens  tetani) Antimicrobial spectrum

  32. anaphylaxis Jarisch-Herxheimer sy Hoigné neurotoxicity allergy pregnancy  breast feeding are not contraindicted SE

  33. Penicillinase-Resistant Penicillins(nafcillin, oxacillin, methicillin) Developed to overcome the penicillinase enzyme of S. aureus which inactivated natural penicillins Gram-positive methicillin-susceptible S. aureus Group streptococci viridans streptococci

  34. meticilline(acidolabile) oxacilline cloxacilline dicloxacilline acidostabile absorption subst.- dependent strong alb. binding good diffusion in parenchym. org. weak BB barrier passage Antistaphylococcal PNC(penicillinase-resistant)

  35. Sensitivity: staphylococci (-lactamase-positive) Resistance: enterococci gram - bacteries Antistaphylococcal PNC (penicillinase-resistant)

  36. Aminopenicillins(ampicillin, amoxicillin) Developed to increase activity against gram-negative aerobes Gram-positive Gram-negativepen-susc S. aureus Proteus mirabilis Group streptococci Salmonella, Shigella viridans streptococci some E. coli Enterococcus sp. L- H. influenzae Listeria monocytogenes

  37. ampicilline amoxicilline combination with clavulanic acid acidostabile absorption variable low albumine binding good inflammatory tissue diffusion increased bile concentration mild nephrotoxicity Amino-PNC(penicillinase-non-resistant)

  38. Sensitivity: gram + cocci enterococci gram – cocci(N.meningitis & gonorrhoeae) H. influenzae aerobic gram – bacilly(E.coli, Salmonella,Shigella) Resistance: enterobacteriaceae staphylococci(-lactamase-positive) Pseudomonas B. fragilis Amino-PNC (penicillinase-non-resistant)

  39. clavulanic acid sulbactam tazobactam irreversible inhibition combination with -lactame ATB similar kinetics & tissue penetration with no antibacterial activity -lactamase inhibitors

  40. Penicillin Pearls • Amoxicillin - Largest selling antibiotic Amoxicillin – High dose for otitis media • Augmentin now has several new products • Ampicillin/Sulbactam – Anaerobes!

  41. Carboxypenicillins(carbenicillin, ticarcillin) Developed to further increase activity against resistant gram-negative aerobes Gram-positiveGram-negativemarginalProteus mirabilis Salmonella, Shigella some E. coli L- H. influenzae Enterobacter sp. Pseudomonas aeruginosa

More Related