390 likes | 489 Vues
Heavy elements and reddening in Gamma Ray Bursts. Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs). Heavy elements and reddening in Gamma Ray Bursts. Sandra Savaglio Johns Hopkins University
E N D
Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)
Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs) Outline • Optical spectra of GRB afterglows • GRB–DLAs vs. QSO–DLAs • Heavy elements and dust
Heavy elements and reddening in Gamma Ray Bursts Acknowledgements Daniela Calzetti – STScI Fiona Harrison – CalTech Tim Heckman – JHU Julian Krolik – JHU Nicola Masetti – CNR, Bologna Eliana Palazzi – CNR Bologna Nino Panagia – STScI James Rhoads – STScI Ken Sembach – STScI
Introduction GRB GRB X-ray position Error Instrument X-ray Afterglow Optical Transient Radio Afterglow z 020405 13h58m10s -31° 23' 15'*5' Uly/MO/SAX y y 0.69 011211 11h15m16s -21° 56' 1' SAX/WFC y y 2.14 011121 11h34m25s -76° 02' 2' SAX/WFC y y y 0.36 010921 22h55m35s +40° 56' 20*15' HE/Uly/SAX y 0.45 010222 14h52m12s +43° 01' 2.5' SAX/WFC y y y 1.477 000926 17h04m15s +51° 46' 3'*10' Uly/Ko/NE y y y 2.066 000418 12h25m21s +20° 05' 4'*8' Uly/KO/NE y y 1.118 000301C 16h20m22s +29° 25' 6'*8' ASM/Uly y y 2.03 000131 06h13m33s -51° 56' 3.5'*16' Uly/KO/NE y 4.5 991208 16h33m55s +46° 26' 14*1' Uly/KO/NE y y 0.706 990712 22h31m50s -73° 24' 2' SAX/WFC y n 0.434 990705 05h09m32s -72° 09' 6' SAX/WFC y y n 0.86 990510 13h38m06s -80° 30' 3' SAX/WFC y y y 1.619 990506 11h54m41s -26° 45' 7' BAT/PCA y y 1.3 990123 15h25m29s +44° 45' 2' SAX/WFC y y y 1.60 980703 23h59m07s +08° 35.6' 4' RXTE/ASM y y y 0.966 980613 10h17m46s +71° 29.9' 4' SAX/WFC y y n 1.096 980425 19h34m54s -52° 49.9' 8' SAX/WFC y SN y 0.0085 971214 11h56m30s +65° 12.0' 4' SAX/WFC y y n 3.42 970828 18h08m29s +59° 18.0' 2.5'*1' RXTE/ASM y n y 0.9578 970508 06h53m28s +79° 17.4' 3' SAX/WFC y y y 0.835 970228 05h01m57s +11° 46.4' 3' SAX/WFC y y n 0.695 This list URL: http://www.aip.de/˜jcg/grbgen.html
GRBs vs. QSOs redshift distribution Introduction
Introduction GRB 990712 zGRB=1.475 0.5 days mR=20.32 0.7 days mR=20.65 1.5 days mR=21.11 (Vreeswijk et al., 2001)
Introduction GRB GRB X-ray position Error Instrument X-ray Afterglow Optical Transient Radio Afterglow z 020405 13h58m10s -31° 23' 15'*5' Uly/MO/SAX y y 0.69 011211 11h15m16s -21° 56' 1' SAX/WFC y y 2.14 011121 11h34m25s -76° 02' 2' SAX/WFC y y y 0.36 010921 22h55m35s +40° 56' 20*15' HE/Uly/SAX y 0.45 010222 14h52m12s +43° 01' 2.5' SAX/WFC y y y 1.477 000926 17h04m15s +51° 46' 3'*10' Uly/Ko/NE y y y 2.066 000418 12h25m21s +20° 05' 4'*8' Uly/KO/NE y y 1.118 000301C 16h20m22s +29° 25' 6'*8' ASM/Uly y y 2.03 000131 06h13m33s -51° 56' 3.5'*16' Uly/KO/NE y 4.5 991208 16h33m55s +46° 26' 14*1' Uly/KO/NE y y 0.706 990712 22h31m50s -73° 24' 2' SAX/WFC y n 0.434 990705 05h09m32s -72° 09' 6' SAX/WFC y y n 0.86 990510 13h38m06s -80° 30' 3' SAX/WFC y y y 1.619 990506 11h54m41s -26° 45' 7' BAT/PCA y y 1.3 990123 15h25m29s +44° 45' 2' SAX/WFC y y y 1.60 980703 23h59m07s +08° 35.6' 4' RXTE/ASM y y y 0.966 980613 10h17m46s +71° 29.9' 4' SAX/WFC y y n 1.096 980425 19h34m54s -52° 49.9' 8' SAX/WFC y SN y 0.0085 971214 11h56m30s +65° 12.0' 4' SAX/WFC y y n 3.42 970828 18h08m29s +59° 18.0' 2.5'*1' RXTE/ASM y n y 0.9578 970508 06h53m28s +79° 17.4' 3' SAX/WFC y y y 0.835 970228 05h01m57s +11° 46.4' 3' SAX/WFC y y n 0.695 This list URL: http://www.aip.de/˜jcg/grbgen.html
Introduction GRB010222 zGRB = 1.475 mV 20.2 (Masetti et al., 2001)
(Castro et al., 2001) Introduction GRB 000926 zGRB = 2.0379
NHI 21021 cm–2 Introduction GRB 000926 zGRB = 2.0379 (Fynbo et al., 2001)
Introduction QSO Damped Lyman Alpha (DLA) systems 5” QSO EX0302-223 zDLA = 1.01 mV 16.4 (Le Brun et al., 1998) Z QSO = 1.41 Lya NHI=2.3x10²º cmˉ ² Wavelength (Å)
Introduction [X/H] = log (NXi/NHI)– log (X/H) (Pettini et al., 2000)
Introduction Metallicity redshift evolution QSO DLAs (Savaglio, 2000)
GRB–DLAs and QSO–DLAs QSO–DLA 0454+39z = 0.8591 FWHM = 7 km s–1 GRB–DLA 010222 zGRB= 1.475 FWHM = 200 – 400 km s–1 velocity (km s–1 ) velocity (km s–1 )
(Fruchter et al., 1999) GRB–DLAs and QSO–DLAs GRB 990123 zGRB = 1.6004 1.4 minutes 14.4 minutes 2.4 hours
GRB–DLAs and QSO–DLAs GRB000926 zGRB = 2.0379 Keck/ESI FWHM 80 km s–1 (Castro et al., 2001) 760 km s–1
Heavy element column densities in GRB–DLAs Equivalent Widths of absorption lines
Heavy element column densities in GRB–DLAs Curve of growth (Spitzer, 1978) Linear part: log Wr / = log (Nf ) – 4.053
Heavy element column densities in GRB–DLAs Curve of growth (Spitzer, 1978)
Heavy element column densities in GRB–DLAs Comparison with QSO–DLAs
Heavy element column densities in GRB–DLAs Comparison with QSO–DLAs
Relative abundances and comparison with QSO–DLAs Heavy element abundances in GRB–DLAs
Relative abundances and comparison with QSO–DLAs Heavy element abundances in GRB–DLAs
Relative abundances and comparison with QSO–DLAs Heavy element abundances in GRB–DLAs
Relative abundances and comparison with QSO–DLAs Heavy element abundances in GRB–DLAs
Dust depletion correction Heavy element abundances in the Galactic ISM (Savage & Sembach 1996)
(Savaglio 2000) Dust depletion correction
Dust depletion correction GRB 000926
Dust depletion correction GRB 010222 GRB 990123
Dust extinction Optical extinction in solar neighborhood
Dust extinction Optical extinction in solar neighborhood
(Fynbo et al., 2001) Dust extinction GRB 000926 zGRB = 2.0379 AV=0.270.12 AV=0.180.06 K U
Grey dust extinction in Active Nuclei Dust extinction (Maiolino, Marconi & Oliva, 2001)
Dust extinction Large dust grains might be destroyed first (Fruchter, Krolik & Rohads, 2001)
Conclusions • Absorption lines in 3 GRB –DLAs indicate column densities of metals are larger than in QSO–DLAs • [Fe/Zn] indicates high dust depletion • Low observed reddening in GRBs can be explained if grey extinction is assumed • High extinction might party explain low fraction (30 – 35 %) of optical GRB afterglow detections This talk URL: http://www.pha.jhu/˜savaglio/grb/grb.ppt