1 / 24

Search for a parity violation in the spectrum of molecules : new perspectives

Search for a parity violation in the spectrum of molecules : new perspectives. C. Chardonnet, C. Stoeffler, B. Darquié , A. Shelkovnikov, C. Daussy, A. Amy-Klein. Laboratoire de Physique des Lasers 99 av.J.-B. Clément, 93430 Villetaneuse, FRANCE.

tomai
Télécharger la présentation

Search for a parity violation in the spectrum of molecules : new perspectives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Search for a parity violation in the spectrum of molecules : new perspectives C. Chardonnet, C. Stoeffler, B. Darquié , A. Shelkovnikov, C. Daussy, A. Amy-Klein Laboratoire de Physique des Lasers 99 av.J.-B. Clément, 93430 Villetaneuse, FRANCE

  2. Introduction: parity violation in chiral molecules Parity violation: 123456789 123456789 123456789

  3. Introduction: parity violation in chiral molecules = = 0 In atomic physics M.A. Bouchiat and C. Bouchiat, Phys. Lett. 48B, 111-114 (1974) In molecular physics D.W. Rein, J. Mol. Evol. 4, 15-22 (1974)

  4. Introduction: parity violation in chiral molecules E1R Rovibrational energy E1L hnR hnL E0R E0L CHFClBr 1975: Due to parity violation, two enantiomers do not have the same absorption spectrum [V.S. Letokhov, Phys. Lett. 53A, 275 (1975)] n L nR 1976 : Proposition to search for parity violation effect in CHFClBr spectrum [O.N. Kompanets et al., Opt. Commun. 19, 414 (1976) ]

  5. Introduction: parity violation in chiral molecules D n 1977: Test on the resolved enantiomers of camphor [E. Arimondo et al. Opt. Commun. 23, 369 (1977)] 2004: Theoretical estimation of PV effect in camphor spectrum [P. Schwerdtfeger et al., Chem. Phys. Lett. 383, 496 (2004)]

  6. 5 MHz 90 kHz 5 kHz 18 kHz 1 cm-1 = 30 GHz 10 GHz CF-stretching fundamental n4 of CHF35Cl81Br cm-1 F.T. Spectrum (A. Valentin) 1074.4 1074.6 1074.8 rovibrational lines: (40,7,34)(40,8,33) (49,10,39)(49,11,38) saturation spectrum in a Fabry-Perot cavity 1.7 10-7 cm-1 saturation spectrum in a 18 m-long cell T. Marrel et al., Journal of Molecular Structure 599, 195-209 (2001)

  7. The experimental setup CO2 laser

  8. Results Mean value : -4.2 Hz standard deviation : 16 Hz N=780 measurements 150 100 50 0 -200 -100 0 100 200 frequency difference (-) - (+) (Hz) Systematic effect (collisional shift) RESULT: C. Daussy et al., Phys. Rev. Lett. 83, 1554-1557 (1999) M. Ziskind et al.,Euro. Phys. J. D 20, 219-225 (2002)

  9. Results Frequency difference (-) - (+) versus pressure 40 30 20 Frequency difference (-) -(+) (Hz) 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 CHFClBr pressure in both cavities (x 10-3 mbar)

  10. Conclusion of these first tests Result Improvement of 5 orders of magnitude limitations • Sensitivity limited by collisions • @ 2.5.10-13 Molecular beam no collisional effect • linewidth ~ 60 kHz Ramsey Fringes spectroscopy Linewidth : 100-1000 times narrower • Calculated effect (1-3)~ 2.4 mHz (810-17) New molecule with stronger effect (1) M. Quack et al., J. Chem. Phys. 119, 11 228 (2003) (2) P. Schwerdtfeger et al., Phys. Rev. A 71, 012103 (2005) (3) R.G. Viglione et al., Phys. Rev. A 62, 052516 (2000)

  11. a new experimental scheme: Doppler free two photon Ramsey spectroscopy w w supersonic beam + two-photon Ramsey fringes spectroscopy Laser zone 1 Laser zone 2 D/u : transit time between zones molecules 2w 2w Molecular beam Mean velocity u D Resolution

  12. Experimental developments:the supersonic beam of SF6 pure or He-seeded Rotational cooling  10 K Flux  1012 molecules/s Beam velocity: 400 m/s

  13. Central fringe of the SF6 signal 100 Hz S/N1Hz = 20 Amlpitude (arb. u.) Frequency detuning (50 Hz/div) Resolution = 310-12 Next problem  accuracy:  (2n3, P(4) E0) = 28 412 764 347 323.0 1.4 Hz A. Shelkovnikov et al., IEEE J. of Quant. Elect. 40 (8), 1023 (2004)

  14. Toward a first observation of PV effect in molecules :a new molecule Re(5-Cp*)(=O)(CH3)Cl P. Schwerdtfeger et al., J. Am. Chem. Soc. 126,1652 (2004) • P. Schwerdtfeger et al., Phys. Rev. A 65, 042508 (2002) • R. Bast et al., Phys. Rev. Lett. 91, 023001 (2003)

  15. Re(5-Cp*)(=O)(CH3)Cl a magic molecule ? • Advantages : • High NCP effect • Easy to synthesize each enantiomer with 100% efficiency • Preparing several tens of grams is feasible • Inconveniencies • Solid at room temperature (sublimation @ 120°C) • Unfavorable partition function (32 atoms, Matom=350 g)  laser ablation or heating and transported by a gas carrier in a supersonic beam Still some reflection on the choice of the best molecule

  16. A new family of chiral molecules based on MTOthe methyltrioxorhenium Efficient sublimation around 100°C Chemistryperformed by J. Crassous and L. Guy vibrational PNC of 400mHz for Re-CH3-S-Se-O (calculated by T. Saue)

  17. Hyperfine structure of a rotational transition of MTO in a supersonic beam (by T. Huet, Lille)

  18. FT spectroscopy on a molecular beam of MTO(P. Asselin, P. Soulard @ UPMC – Paris) RQJ(0) RQJ(3) PQJ(3) PQJ(6) RQJ(6)

  19. Saturated absorption spectrum in a cell (at LPL)

  20. hyperfine structure of a rovibrational spectrum of MTO in a cell at room temperature (Scan of 10 MHz)

  21. Detail of the hyperfine structure of MTO in a cell 36.9 37.0 37.1 37.2 Exp. Conditions: P= 10 -3 mbar FWHM=60 kHz 2nd harmonic detection Laser Power : a few µW Saturated absorption signal (u.a.) frequency (MHz)

  22. First rovibrational signal of MTO in a supersonic beam seeded with He 4.4 4.0 Linear absorption (a.u.) 3.6 3.2 20 30 40 50 60 70 80 frequency (MHz) CO2 Laser AOM(s) photodetector Ø nozzle = 200 µm Ø skimmer = 2mm

  23. A theoretical and experimental program involving 6 groups -Peter SCHWERDTFEGER Theoretical Chemistry AUCKLAND (New Zealand) - TrondSAUE, RadovanBAST Laboratoire de Chimie Quantique et Modélisation Moléculaire STRASBOURG (France) - JeanneCRASSOUS, LaureGUY Laboratoire de Chimie de l’ENS LYON (France) - ThérèseHUET Laboratoire de Physique des Lasers, Atomes, Molécules LILLE (France) - PierreASSELIN, PascaleSOULARD Laboratoire de Dynamique, Intéraction et Réactivité PARIS (France) - Benoît DARQUIE, Alexandr SHELKOVNIKOV, AnneAMY-KLEIN, CC Laboratoire de Physique des Lasers VILLETANEUSE (France)

  24. Thank you for your attention ! Work supported by: CNRS, ANR (contracts NCPMOL 2006-2009 and NCPCHEM 2011-2014)

More Related