1 / 46

G. Baribaud/AB-BDI

Digital Signal Processing-2003. The Laplace transform. The linear system concept The definition and the properties. 6 March 2003. DISP-2003. G. Baribaud/AB-BDI. Digital Signal Processing-2003. The Laplace transform. • Continuous linear monovariable systems

ulfah
Télécharger la présentation

G. Baribaud/AB-BDI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Digital Signal Processing-2003 The Laplace transform • The linear system concept • The definition and the properties 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  2. Digital Signal Processing-2003 The Laplace transform • Continuous linear monovariable systems • Continuous linear multivariable systems • Impulse response • Convolution • Laplace transform: definition and properties • Inverse Laplace transform • Comments on stability 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  3. Digital Signal Processing-2003 Applications • Operational calculus • Solution for solving problems in engineering, physics • Applied by Heaviside by the end of 19 century • Bromwich, Carson and van der Pol • Applied complex variable early 20 century • A useful tool for system analysis • However we will limit to essentials for our purpose 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  4. f(t) t Digital Signal Processing-2003 Definition of function f(t) • f(t)=0 for t<0 • defined for t>=0 • possibly with discontinuities • f(t)<Mexp(t)[exponential order] • s: real or complex Definition of Laplace transform F(s) 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  5. f(t) t f(t) t Digital Signal Processing-2003 Examples: Dirac 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  6. f(t) t f(t) t Digital Signal Processing-2003 Examples: Heaviside 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  7. f(t) t Digital Signal Processing-2003 Example : Ramp 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  8. f(t) F(s)=L[f(t)] Digital Signal Processing-2003 Some useful Laplace transforms 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  9. Digital Signal Processing-2003 •Linearity 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  10. Example Digital Signal Processing-2003 • Translation [in s] a) if F(s)=L[f(t)] 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  11. f(t) g(t) t Example Digital Signal Processing-2003 • Translation [time] b) if g(t) = f(t-a) for t>a = 0 for t<a a 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  12. Example Digital Signal Processing-2003 •Change of time scale 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  13. f(t) t Digital Signal Processing-2003 • Derivative [first order] 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  14. •If discontinuity in a Digital Signal Processing-2003 • Derivatives of higher order 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  15. Digital Signal Processing-2003 • Derivatives examples 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  16. Equation describing the circuit Laplace transform Digital Signal Processing-2003 Application: RC circuit R v(t) e(t) C 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  17. Digital Signal Processing-2003 • Integral 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  18. More general Digital Signal Processing-2003 Multiplication by t Leibnitz’s rule 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  19. Digital Signal Processing-2003 Division by t 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  20. Digital Signal Processing-2003 • Periodic function 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  21. Digital Signal Processing-2003 Sine and cosine are periodic functions 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  22. Exponential order Digital Signal Processing-2003 •Limit behaviour: Initial value 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  23. Digital Signal Processing-2003 •Limit behaviour: Initial value 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  24. Impulse function Impulse response Digital Signal Processing-2003 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  25. e0 Digital Signal Processing-2003 Step function and zero initial conditions 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  26. Digital Signal Processing-2003 Step function and initial conditions v(0)  0 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  27. Digital Signal Processing-2003 Ramp function 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  28. Digital Signal Processing-2003 Harmonic analysis 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  29. Digital Signal Processing-2003 Forced Transient 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  30. y(t) Convolution x(t) Linear system h(t) Heuristic Digital Signal Processing-2003 Laplace transform  6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  31. Digital Signal Processing-2003 H(j) = Transfer function Argument Module 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  32. Resolvent Matrix State Transition Matrix Digital Signal Processing-2003 Multivariable systems 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  33. Characteristic polynomial Digital Signal Processing-2003 x(t) y(t) Linear system Described by constant coefficient linear differential equations Assuming all derivatives are 0 for Laplace transform 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  34. Transient (free) Forced Digital Signal Processing-2003 x(t) y(t) Linear system Described by constant coefficient linear differential equations Assuming all derivatives are  0 for Laplace transform 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  35. Digital Signal Processing-2003 The Laplace transform • Continuous linear monovariable systems • Continuous linear multivariable systems • Impulse response • Convolution • Laplace transform: definition and properties • Inverse Laplace transform • Comments on stability 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  36. Digital Signal Processing-2003 Inverse Laplace transform Knowing F(s)=L[f(t)]  What about f(t) from F(s) ? Lerch theorem: If f(t) is piece-wise continuous and of exponential order then the inverse transform is unique (This is the case for our functions) 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  37. a) Analytic method On Bromwich contour b) Use of tables method Digital Signal Processing-2003 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  38. Digital Signal Processing-2003 c) Fraction expansion with different roots 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  39. Digital Signal Processing-2003 Example 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  40. Digital Signal Processing-2003 c) Fraction expansion with multiple roots Example 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  41. Digital Signal Processing-2003 d) Series Example 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  42. Q(s) has n distinct zeroes Digital Signal Processing-2003 e) Heaviside development 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  43. Digital Signal Processing-2003 The Laplace transform • Continuous linear monovariable systems • Continuous linear multivariable systems • Impulse response • Convolution • Laplace transform: definition and properties • Inverse Laplace transform • Comments on stability 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  44. Digital Signal Processing-2003  Consequences : stability  All s real and negative : tends towards zero  All s real and at least one  positive : tends towards infinity If s complex then conjugates :   +j and -j : oscillatory behaviour : see above 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  45. Digital Signal Processing-2003 s plane x x x x The zeroes of the characteristic Polynomial must lie on the left side of the s plane 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

  46. Digital Signal Processing-2003 Thank you for your attention 6 March 2003 DISP-2003 G. Baribaud/AB-BDI

More Related