1 / 29

High energy n astronomy and Gamma-ray bursts

High energy n astronomy and Gamma-ray bursts. Eli Waxman Weizmann Institute, ISRAEL. Outline. The origin of UHECRs (>10 19 eV): Unknown Part I: UHECR-GRBs Part II: The role of n astronomy. What do we know about >10 19 eV CRs?. J(>10 11 GeV)~1 / 100 km 2 year 2 p sr

viveka
Télécharger la présentation

High energy n astronomy and Gamma-ray bursts

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High energy n astronomy andGamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL

  2. Outline • The origin of UHECRs (>1019eV): Unknown • Part I: UHECR-GRBs • Part II: The role of n astronomy

  3. What do we know about >1019eV CRs? • J(>1011GeV)~1 / 100 km2 year 2p sr • Most likely X-Galactic (RL=e/eB=40ep,20kpc) • Composition? HiRes- p, Auger- becoming heavier? (Uncertain spp) • (An)isotropy: 2s, consistent with LSS • Production rate & spectrum: protons, e2(dQ/de) ~1043.7 erg/Mpc3 yr + GZK • Acceleration (expanding flow): Confinement L>LB>1012 (G2/b) (e/Z 1020eV)2 Lsun Synch. losses G > 102.5 (L52)1/10 (dt/10ms)-1/5 !! No L>1012 Lsun at d<dGZK  Transient Sources [EW 95]

  4. UHECR sources: Suspects • Constraints:- L>1012 (G2/b) Lsun • - e2(dQ/de) ~1043.7 erg/Mpc3 yr • - d(1020eV)<dGZK~100Mpc • !! No L>1012 Lsun at d<dGZK  Transient Sources • Gamma-ray Bursts (GRBs) • Lg~ 1019LSun>1012 (G2/b) Lsun= 1017 (G/ 102.5)2 Lsun • G~ 102.5 (L52)1/10 (dt/10ms)-1/5 • e2(dQ/de)g~ 1053erg*10-9.5/Mpc3 yr = 1043.5 erg/Mpc3 yr • Transient: DTg~10s << DTpg ~105 yr • Active Galactic Nuclei (AGN, Steady): • G~ 101 L>1014 LSun=few brightest • !! Non at d<dGZK  Invoke: • * “Dark” (proton only) AGN • * L~ 1014 LSun , Dt~1month flares • (from stellar disruptions) [EW 95, Vietri 95, Milgrom & Usov 95] [EW 95] [Blandford 76; Lovelace 76] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

  5. UHECR per GRB • Uncertainties: Absolute ECR calibration ECR/EUHECR z=0 high-L GRB rate [Guetta et al. 2010]

  6. GRB int./ext. shock acceleration Confinement L>LB>1012 (G2/b) (e/Z 1020eV)2 Lsun • LB~Lg ?? • Internal shocks (G~1): B~Bequip, LB~L Does not necessarily require orders of magnitude amplification

  7. GRB int./ext. shock acceleration Shock frame G p • External (G>>1): Bup~10-5 Bequip ?? LB<<L, No UHE acceleration?? • e- t(acceleration) < t(IC) X-ray AG  B > 0.2 n05/8 mG >> 1mG 100MeV  B > 5 n05/8 mG (0.1mG )  Upstream field generation, Possible UHE @ external Consistent with theoretical considerations (Kumar & Barniol-Duran 09: No amplification? Parameter fit {eB, ee…} ignoring physics) Downstream Upstream [Li & EW 06] [Li 10] [Piran &Nakar 10] [eg Keshet et al 09; Nishikawa et al. 09]

  8. HE n Astronomy • p + g N +p p0 2g ; p+  e+ + ne + nm + nm  Identify UHECR sources Study BH accretion/acceleration physics • E2dQ/dE=1044erg/Mpc3yr & tgp<1: • If X-G p’s:  Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]

  9. HE n experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km3 IceCube: +660/yr OM (05/06…) 4800 OM=1 km3s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0.05 km3 Nestor: (?)  0.1 km3 km3Net: R&D  1 km3 • UHE: Radio Air shower • Aura, Ariana (in Ice) Auger (nt) • ANITA (Balloon) EUSO (?) • LOFAR

  10. GRB n’s • If: Baryonic jet • Background free: [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

  11. GRB G & fpp • Prompt ~1MeV synch  fpp ~ tgg(100MeV)~1 tgg(100MeV)~1 G~300 Prompt GeV photons  tgg(100MeV)<<1, G>>300, no n’s ?? Is tgg(100MeV)<<1? • Challenge to prompt MeV sync production • 95% of LGRB not detected by LAT For bright GRBs, non detection implies: F(>100MeV)/F(1MeV) < 0.1  tgg(100MeV)>~1 ? [Abdo et al. 09; Greiner et al. 09; Dermer 10] [Guetta et al. 10]

  12. GRB G’s • Caution in inferring Gmin: - No exponential cutoff at tgg>1, rather nfn~1/n - GeV & MeV emission likely originate from different radii (HE delay), n(tgg=1)~R • Internal collisions at R0“residual” coll. @ R>> R0 E(R)~1/Rq with q<2/3 nfn~1/nq for n>n(tgg=1,R= R0) May account for: prompt optical (avoid self-abs.) prompt GeV (avoid pair prod.) GRB080916c HE delays  G~300 [Li & EW 08] [Li 10] [Li 10]

  13. The current limit [Achterberg et al. 08 (The IceCube collaboration)]

  14. TeV GRB n’s • Collapsar jet penetration, failed SN jet : TeV n’s [Meszaros & EW 01; Razzaque et al. 03, 04; Guetta & Granot 03; Dermer & Atoyan 03 Ando & Beacom 05]

  15. n- physics & astro-physics [EW& Bahcall 97] • p decay  ne:nm:nt = 1:2:0 (Osc.) ne:nm:nt = 1:1:1 t appearance experiment • GRBs: n-g timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106 • EM energy loss of m’s (and p’s) • ne:nm:nt = 1:1:1 (E>E0) 1:2:2 • GRBs: E0~1015eV • Combining E<E0, E>E0 flavor measurements may constrain CPV [SinQ13 Cosd] [EW & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Rachen & Meszaros 98; Kashti & EW 05] [Blum, Nir & EW 05]

  16. Summary UHECRs • Origin- an outstanding puzzle • GRBs- only known sources satisfying all constraints n astronomy • Detectors approach required ~1Gton scale • Resolve UHECR puzzle: composition, sources • Resolve GRB physics open Q: Baryonic/Poynting jet, G, particle acceleration [test collapsar jets, X/FUV flares] • Constrain n physics, LI, WEP

  17. Composition clues HiRes 2005 Auger 2009 Protons Heavier at highest E? Or: modified s extrapolation? (s~300 TeV) [E.g. Wibig 08,09; Ulrich et al. 09 Kusenko 10]

  18. Production rate & Spectrum • protons, dQ/dE~(1+z)mE-a • teff. : p + gCMB N +p Q=J/ teff. cteff [Mpc] log(E2dQ/dE) [erg/Mpc2 yr] GZK (CMB) suppression [Katz & EW 09] • Consistent with • protons, E2(dQ/dE) ~1043.7 erg/Mpc3 yr + GZK [EW 1995; Bahcall & EW 03]

  19. Back up slides

  20. Anisotropy Biased (rsource~rgal for rgal>rgal ) • Anisotropy @ 98% CL; Consistent with LSS (Correlation with low-luminosity AGN? Trace LSS) • Anisotropy/Compostion connection Acceleration of Z(>>1) to E  Acceleration of p to E/Z Anisotropy of Z @ E  Stronger anisotropy @ E/Z Anisotropy not observed @ E/Z  Z~1 @ E~1019.7eV [Kashti & Waxman 08] [:Lemoine & EW 09]

  21. & IceCube AMANDA

  22. The Mediterranean effort • ANTARES (NESTOR, NEMO) KM3NeT

  23. M82 M81 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler

  24. A lower bound: Star bursts • Star burst galaxies: - Star Formation Rate ~103Msun/yr >> 1 Msun/yr “normal” (MW) - Density ~103/cc >> 1/cc “normal” - B ~1 mG >> 1mG “normal” • Most stars formed in (z>1.5) star bursts • High density + B: CR e-’s lose all energy to synchrotron radiation CR p’s lose all energy to p production [Quataert et al. 06] [Loeb & Waxman 06]

  25. Starbursts Synchrotron radio Fn calibration p0gg, Fn ~Fg M82, NGC253: Hess, VERITAS 09 Fermi 09 dN/dE~1/Ep, p<~2.2 [Loeb & Waxman 06]

  26. The 1020eV challenge v R B /G v G2 G2 2R l =R/G (dtRF=R/Gc) [Waxman 95, 04, Norman et al. 95]

  27. The GRB “GZK sphere” g p • LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV eB=(B2/8p)/nT~0.01 (B~0.01mG), lB~10kpc • Prediction: D lB [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

  28. GRB Model Predictions [Miralda-Escude & Waxman 96]

  29. Indirect detection J(>1011GeV)~1 / 100 km2 year 2p sr Auger: 3000 km2 3,000 km2 Fluorescence detector Ground array

More Related