1 / 100

Materials and Molecules - Behind What You See

Discover the underlying molecular flows that affect earth systems and learn how to reduce the impact of materials on the environment. Explore the use of carbon and waste in eco-innovation and biomimicry to solve global warming and waste problems.

vpressley
Télécharger la présentation

Materials and Molecules - Behind What You See

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Materials and Molecules - Behind What You See

  2. Materials and Moelcules – Behind What you See(Originally Concretes – Solution to Kyoto) Presentation by John Harrison, managing director of TecEco and inventor of Tec and Eco-Cements and the CarbonSafe process. TecEco are in the biggest business on the planet – that of solving global warming waste and water problems Our slides are deliberately verbose as most people download and view them from the net. Because of time constraints I will have to race over some slides John Harrison B.Sc. B.Ec. FCPA.

  3. Techno-Processes & Earth Systems Underlying the techno-process that describes and controls the flow of matter and energy are molecular stocks and flows. If out of tune with nature these moleconomic flows have detrimental affects on earth systems. Bio-sphere Geo-sphere Earth Systems Atmospheric composition, climate, land cover, marine ecosystems, pollution, coastal zones, freshwater and salinity. Detrimental affects on earth systems Waste Take Move 500-600 billion tonnesUse some 50 billion tonnes Manipulate, Make and Use Techno-sphere To reduce the impact on earth systems new technical paradigms need to be invented that result in underlying molecular flows that mimic or at least do not interfere with natural flows.

  4. Under Materials Flows in the Techno-Processes are Molecular Flows Take → Manipulate → Make→ Use → Waste [ ←Materials→ ] [ ← Underlying molecular flow → ] If the underlying molecular flows are “out of tune” with nature there is damage to the environmente.g. heavy metals, cfc’s, c=halogen compounds and CO2 MoleconomicsIs the study of the form of atoms in molecules, their flow, interactions, balances, stocks and positions. What we take from the environment around us, how we manipulate and make materials out of what we take and what we waste result in underlying molecular flows that affect earth systems. These flows should mimic or minimally interfere with natural flows.

  5. The Carbon Cycle and Emissions Emissions from fossil fuels and cement production are a significant cause of the global warming. Units: GtC GtC/yr Source: David Schimel and Lisa Dilling, National Centre for Atmospheric Research 2003

  6. Changing the Techno-Processes Take => manipulate => make => use => wasteDriven by fossil fuel energy with detrimental effects on earth systems. Eco-innovate to create “industrial ecologies” ReduceRe-useRecycle Materials Atoms and Molecules in the global commons

  7. Utilizing Carbon and Wastes (Biomimicry) • The waste from one plant or animal is the food or home for another. • During earth's geological history large tonnages of carbon were put away as limestone and other carbonates and as coal and petroleum by the activity of plants and animals. • Sequestering carbon in magnesium binders and aggregates in the built environment mimics nature in that carbon is used in the homes or skeletal structures of most plants and animals. In eco-cement blocks and mortars the binder is carbonate and the aggregates are preferably wastes We all use carbon and wastes to make our homes! “Biomimicry”

  8. Biomimicry - Ultimate Recyclers • As peak oil looms and the price of transport is set to rise sharply • We should not just be recycling based on chemical property requiring sophisticated equipment and resources • We should be including wastes based on physical properties as well as chemical composition in composites whereby they become local resources. The Jackdaw recycles all sorts of things it finds nearby based on physical property. The bird is not concerned about chemical composition and the nest it makes could be described as a composite material. TecEco cements are benign binders that can incorporate all sort of wastes without reaction problems. We can do the same as the Jackdoor

  9. Energy from Oil Peak Oil Production (Campell 2004) Most models of oil reserves, production and consumption show peak oil around 2010 (Campbell 2005) and serious undersupply and rapidly escalating prices by 2025. It follows that there will be economic mayhem unless the cement and concrete industry acts now to change the energy base of their products.

  10. Using Wastes and Non-Traditional Aggregates to Make TecEco Cement Concretes • As the price of fuel rises, theuse of local or on site lowembodied energy materialsrather than carted aggregateswill have to be considered. No longer an option? The use of on site and local wastes will be made possible by the use of low reactivity TecEco mixes and a better understanding of particle packing. We hope with our new software to be able to demonstrate how adding specific size ranges can make an unusable waste such as a tailing or sludge suitable for making cementitious materials. Recent natural disasters such as the recent tsunami and Pakistani earthquake mean we urgently need to commercialize TecEco technologies because they provide benign environments allowing the use of many local materials and wastes without delayed reactions

  11. Huge Potential for More Sustainable Construction Materials • Reducing the impact of the take and waste phases of the techno-process. • including carbon in materialsthey are potentially carbon sinks. • including wastes forphysical properties aswell as chemical compositionthey become resources. • re engineeringmaterials toreduce the lifetimeenergy of buildings Many wastes including CO2 can contribute to physical properties reducing lifetime energies CO2 CO2 Waste CO2 C Waste CO2

  12. Impacts of Landfill Landfill is the technical term for filling large holes in the ground with waste. Landfills release methane, can cause ill health in the area, leads to the contamination of land, underground water, streams and coastal waters and gives rise to various nuisances including increased traffic, noise, odours, smoke, dust, litter and pests. Most damaging is the release of dangerous molecules to the global commons

  13. Economically Driven Sustainability New, more profitable technical paradigms are required that result in more sustainable and usually more efficient moleconomic flows that mimic natural flows or better, reverse our damaging flows. $ - ECONOMICS - $

  14. Changing the Technical Paradigm • “By enabling us to make productive use of particular raw materials, technology determines what constitutes a physical resource1” • Pilzer, Paul Zane, Unlimited Wealth, The Theory and Practice of Economic Alchemy, Crown Publishers Inc. New York.1990 By inventing new technical paradigms and re-engineering materials we can change the underlying molecular flows that are damaging this planet. It is not hard to do this and it could even be economic. All it takes is lateral thinking and imagination.

  15. Examples of Economic Changes in Technical Paradigms that result in Greater Sustainability Incandescent Fluorescent Led Light <20 watts1700 lumens 25 watts1700 lumens 100 watts1700 lumens Light Globes - A Recent Paradigm Shift in Technology Reducing Energy Consumption Light Globes in the last 10 years have evolved from consuming around 100 watts per 1700 lumens to less that 20 watts per 1700 lumens. As light globes account for around 30% of household energy this is as considerable saving. Robotics - A Paradigm Shift in Technology that will fundamentally affect Building and Construction Construction in the future will be largely done by robots because it will be more economic to do so. Like a color printer different materials will be required for different parts of structures, and wastes such as plastics will provide many of the properties required for the cementitious composites of the future used. A non-reactive binder such as TecEco tec-cements can supply the right rheology, and like a printer, very little will be wasted.

  16. Sustainability = Culture + Technology Increase in demand/price ratio for sustainability due to educationally induced cultural drift. $ Supply Greater Value/for impact (Sustainability) and economic growth Equilibrium shift ECONOMICS New Technical Paradigms are required that deliver sustainability. Demand Increase in supply/price ratio for more sustainable products due to innovative paradigm shifts in technology. # Sustainability could be considered as where culture and technology meet.

  17. The TecEco CarbonSafe Industrial Ecology CO2 CO2 CO2 CO2 The CarbonSafe Geo-Photosynthetic Process is TecEco’s evolving techno-process that delivers profitable outcomes whilst reversing underlying undesirable moleconomic flows from other less sustainable processes. Inputs: Atmospheric or smokestack CO2, brines,waste acid, other wastes Outputs: Potable water, gypsum, sodium bicarbonate, salts, building materials, bottled concentrated CO2 (for geo-sequestration and other uses). Solar or solar derived energy TecEcoKiln TecEco MgCO2 Cycle MgO MgCO3 Greensols Process 1.29 gm/l Mg Coal Fossil fuels Carbon or carbon compoundsMagnesium oxide CO2 Oil

  18. The TecEco CarbonSafe Industrial Ecology InputsBrinesWaste AcidCO2 Outputs Gypsum, Sodium bicarbonate, Salts, Building materials, Potable water

  19. The CarbonSafe Industrial Ecology 1.354 x 109 km3 Seawater containing 1.728 1017 tonne Mg or suitable brines from other sources Seawater Carbonation Process Waste Acid Gypsum + carbon waste (e.g. sewerage) = fertilizers Bicarbonate of Soda (NaHCO3) CO2 from power generation or industry Potable water Gypsum (CaSO4) Sewerage compost Other salts Na+,K+, Ca2+,Cl- CO2 as a biological or industrial input or if no other use geological sequestration Magnesite (MgCO3) Solar Process to Produce Magnesium Metal Magnesium Thermodynamic Cycle Simplified TecEco ReactionsTec-Kiln MgCO3 → MgO + CO2 - 118 kJ/moleReactor Process MgO + CO2 → MgCO3 + 118 kJ/mole (usually more complex hydrates) CO2 from power generation, industry or out of the air Magnesite (MgCO3) Magnesia (MgO) Hydroxide ReactorProcess Sequestration Table – Mg from Seawater CO2 Eco-CementTec-Cement Other Wastes

  20. Reduction Global CO2 from CarbonSafe Process

  21. Why Magnesium Carbonates for Sequestration? • Because of the low molecular weight of magnesium, magnesium oxide which hydrates to magnesium hydroxide and then carbonates, is ideal for scrubbing CO2 out of the air and sequestering the gas into the built environment: • More CO2 is captured than in calcium systems as the calculations below show. • An area 10km by 10m by 150m deep of magnesium carbonate will sequester all the excess CO2 we release to the atmosphere in a year. • At 2.09% of the crust magnesium is the 8th most abundant element • Magnesium minerals are potential low cost. New kiln technology from TecEco will enable easy low cost simple non fossil fuel calcination of magnesium carbonate with CO2 capture for geological sequestration.

  22. The TecEco Dream – A More Sustainable Built Environment CO2 CO2 OTHERWASTES CO2 FOR GEOLOGICAL SEQUESTRATION PERMANENT SEQUESTRATION & WASTE UTILISATION (Man made carbonate rock incorporating wastes as a building material) MINING MgO TECECO KILN MAGNESITE + OTHER INPUTS TECECO CONCRETES RECYCLED BUILDING MATERIALS We need materials that require less energy to make them, that last much longer and that contribute properties that reduce lifetime energies “There is a way to make our city streets as green as the Amazon rainforest”. Fred Pearce, New Scientist Magazine SUSTAINABLE CITIES

  23. Materials in the Built Environment • The built environment is made of materials and is our footprint on earth. • It comprises buildings and infrastructure. • Construction materials comprise • 70% of materials flows (buildings, infrastructure etc.) • 40-50% of waste that goes to landfill (15 % of new materials going to site are wasted.) • At 1.5% of world GDP Annual Australian production of building materials likely to be in the order 300 million tonnes or over 15 tonnes per person. • Over 30 billion tonnes of building materials are used annually on a world wide basis. • Mostly using virgin natural resources • Combined in such a manner they cannot easily be separated. • Include many toxic elements.

  24. Impact of the Largest Material Flow - Cement and Concrete • Some 600 billion tonnes of matter are moved around the planet a year of which some 50 billion tonnes only is used. • Concrete made with cement is the most widely used material on Earth accounting for some 30% of all materials flows on the planet and 70% of all materials flows in the built environment. • Global Portland cement production is currently in the order of 2 billion tonnes per annum. • Globally over 14 billion tonnes of concrete are poured per year. • Over 2 tonnes per person per annum • Much more concrete is used than any other building material. TecEco Pty. Ltd. have benchmark technologies for improvement in sustainability and properties

  25. Embodied Energy of Building Materials Concrete is relatively environmentally friendly and has a relatively low embodied energy Downloaded from www.dbce.csiro.au/ind-serv/brochures/embodied/embodied.htm (last accessed 07 March 2000)

  26. Average Embodied Energy in Buildings Most of the embodied energy in the built environment is in concrete. Because so much concrete is used there is a huge opportunity for sustainability by reducing the embodied energy, reducing the carbon debt (net emissions) and improving properties that reduce lifetime energies. Downloaded from www.dbce.csiro.au/ind-serv/brochures/embodied/embodied.htm (last accessed 07 March 2000)

  27. Emissions from Cement Production • Chemical Release • The process of calcination involves driving off chemically bound CO2 with heat. CaCO3 →CaO + ↑CO2 • Process Energy • Most energy is derived from fossil fuels. • Fuel oil, coal and natural gas are directly or indirectly burned to produce the energy required releasing CO2. • The production of cement for concretes accounts for around 10% of global anthropogenic CO2. • Pearce, F., "The Concrete Jungle Overheats", New Scientist, 19 July, No 2097, 1997 (page 14). CO2 CO2 Arguments that we should reduce cement production relative to other building materials are nonsense because concrete is the most sustainable building material there is. The challenge is to make it more sustainable.

  28. Cement Production ~= Carbon Dioxide Emissions Between tec, eco and enviro-cements TecEco can provide a viable much more sustainable alternative.

  29. TecEco Binder Systems SUSTAINABILITY PORTLAND POZZOLAN Hydration of the various components of Portland cement for strength. Reaction of alkali with pozzolans (e.g. lime with fly ash.) for sustainability, durability and strength. TECECO CEMENTS DURABILITY STRENGTH TecEco concretes are a system of blending reactive magnesia, Portland cement and usually a pozzolan with other materials and are a key factor for sustainability. REACTIVE MAGNESIA Hydration of magnesia => brucite for strength, workability, dimensional stability and durability. In Eco-cements carbonation of brucite => nesquehonite, lansfordite and an amorphous phase for sustainability.

  30. TecEco Formulations • Tec-cements (5-15% MgO, 85-95% OPC) • contain more Portland cement than reactive magnesia. Reactive magnesia hydrates in the same rate order as Portland cement forming Brucite which uses up water reducing the voids:paste ratio, increasing density and possibly raising the short term pH. • Reactions with pozzolans are more affective. After all the Portlandite has been consumed Brucite controls the long term pH which is lower and due to it’s low solubility, mobility and reactivity results in greater durability. • Other benefits include improvements in density, strength and rheology, reduced permeability and shrinkage and the use of a wider range of aggregates many of which are potentially wastes without reaction problems. • Eco-cements (15-95% MgO, 85-5% OPC) • contain more reactive magnesia than in tec-cements. Brucite in porous materials carbonates forming stronger fibrous mineral carbonates and therefore presenting huge opportunities for waste utilisation and sequestration. • Enviro-cements (5-15% MgO, 85-95% OPC) • contain similar ratios of MgO and OPC to eco-cements but in non porous concretes brucite does not carbonate readily. • Higher proportions of magnesia are most suited to toxic and hazardous waste immobilisation and when durability is required. Strength is not developed quickly nor to the same extent.

  31. TecEco Cement LCA TecEco Concretes will have a big role post Kyoto as they offer potential sequestration as well as waste utilisation The TecEco LCA model is available for download under “tools” on the web site

  32. TecEco Technology in Practice => Whittlesea, Vic. Australia On 17th March 2005 TecEco poured the first commercial slab in the world using tec-cement concrete with the assistance of one of the larger cement and pre-mix companies. • The formulation strategy was to adjust a standard 20 MPa high fly ash (36%) mix from the company as a basis of comparison. • Strength development, and in particular early strength development was good. Interestingly some 70 days later the slab is still gaining strength at the rate of about 5 MPa a month. • Also noticeable was the fact that the concrete was not as "sticky" as it normally is with a fly ash mix and that it did not bleed quite as much. • Shrinkage was low. 7 days - 133 micro strains, 14 days - 240 micro strains, 28 days - 316 micros strains and at 56 days - 470 microstrains.

  33. TecEco Technology in Practice => Porous Pavement Allow many mega litres of good fresh water to become contaminated by the pollutants on our streets and pollute coastal waterways Or Capture and cleanse the water for our use?

  34. TecEco Technology in Practice First Eco-cement mud bricks and mortars in Australia • Tested up twice as strong as the PC controls • Mud brick addition rate 2.5% • Addition rate for mortars 1:8 not 1:3 because of molar ratio volume increase with MgO compared to lime. => Whittlesea, Vic. Australia

  35. TecEco Technology in Practice => Earthship Brighton, UK By Taus Larsen, (Architect, Low Carbon Network Ltd.) The Low Carbon Network (www.lowcarbon.co.uk) was established to raise awareness of the links between buildings, the working and living patterns they create, and global warming and aims to initiate change through the application of innovative ideas and approaches to construction. England’s first Earthship is currently under construction in southern England outside Brighton at Stanmer Park and TecEco technologies have been used for the floors and some walling. Earthships are exemplars of low-carbon design, construction and living and were invented and developed in the USA by Mike Reynolds over 20 years of practical building exploration. They are autonomous earth-sheltered buildings independent from mains electricity, water and waste systems and have little or no utility costs. For information about the Earthship Brighton and other projects please go to the TecEco web site.

  36. TecEco Technology in Practice => Clifton Surf Life Saving Club The Clifton Surf Life Saving Club was built by first pouring footings, On the footings block walls were erected and then at a later date concrete was laid in between. As the ground underneath the footings was sandy, wet most of the time and full of salts it was a recipe for disaster. Predictably the salty water rose up through the footings and then through the blocks and where the water evaporated there was strong efflorescence, pitting, loss of material and damage. The TecEco solution was to make up a formulation of eco-cement mortar which we doctored with some special chemicals to prevent the rise of any more moisture and salt. The solution worked well and appears to have stopped the problem.

  37. TecEco Technology in Practice => Mike Burdon’s Murdunna Works Mike Burdon, Builder and Plumber. I work for a council interested in sutainability and have been involved with TecEco since around 2001 in a private capacity helping with large scale testing of TecEco tec-cements at our shack. I am interested in the potentially superior strength development and sustainability aspects. To date we have poured two slabs, footings, part of a launching ramp and some tilt up panels using formulations and materials supplied by John Harrison of TecEco. I believe that research into the new TecEco cements essential as overall I have found: • The rheological performance even without plasticizer was excellent. As testimony to this the contractors on the site commented on how easy the concrete was to place and finish. • We tested the TecEco formulations with a hired concrete pump and found it extremely easy to pump and place. Once in position it appeared to “gel up” quickly allowing stepping for a foundation to a brick wall. • Strength gain was more rapid than with Portland cement controls from the same premix plant and continued for longer. • The surfaces of the concrete appeared to be particularly hard and I put this down to the fact that much less bleeding was observed than would be expected with a Portland cement only formulation

  38. TecEco Technology in Practice => DJ Motors, Hobart Tec-Cement concretes exhibit little or no shrinkage. At 10% substitution of MgO for PC the shrinkage is less than half normal. At 18% substitution with no added pozzolan there was no measurable shrinkage or expansion. The above photo shows a tec-cement concrete topping coat (with no flyash) 20mm thick away from the door and 80 mm thick near the door. Note that there has been no tendency to push the tiles or shrink away from the borders as would normally be the case.

  39. TecEco Technology in Practice => Island Block and Paver,Tasmania TecEco Tec and Eco-Cement blocks are now being made commercially in Tasmania and with freight equalization may be viable to ship to Victoria for your “green” project. Hopefully soon we will have a premix mortar available that uses eco-cement.

  40. TecEco Technology in Practice => Foamed Concretes Foamed TecEco cement concretes can be produced to about 30% weight reduction in concrete trucks using cellflow additive or to about 70% weight reduction using a foaming machine with mearlcrete additive (or equivalents) BUILD LITE CELLULAR CONCRETE4 Rosebank Ave  Clayton Sth  MELBOURNE  AUSTRALIA 3169PH  61 3 9547 0255    FX  61 3 9547 0266

  41. Tec & Eco Cement Foamed Concrete Slabs => Foamed Concrete Slabs BUILD LITE CELLULAR CONCRETE4 Rosebank Ave  Clayton Sth  MELBOURNE  AUSTRALIA 3169PH  61 3 9547 0255    FX  61 3 9547 0266

  42. TecEco Technology in Practice => Foamed Concretes Panels Imagine a conventional steel frame section with a foamed concrete panel built in adding to structural strength, providing insulation as well as the external cladding of a structure. Rigid Steel Framing have developed just such a panel and have chosen to use TecEco cement technology for the strength, ease of use and finish. Patents applied for by Rigid Steel Framing Please direct commercial enquiries to Rigid Steel Framing at rigidsteel.com.au

  43. TecEco Technology in Practice => Foamed Concretes Panels Rear view of test panels showing tongue and groove and void for services.Interior plasterboard is fixed conventionally over gap for services.

  44. TecEco Technologies Take Concrete into the Future • More rapid early strength gain even with added pozzolans • More supplementary materials can be used reducing costs and take and waste impacts. • Higher strength/binder ratio, provided greater plasticity contributed by magnesia used to reduce water. • Less shrinkage and cracking • More durable concretes • Reducing costs and take and waste impacts. • Use of wastes including carbon dioxide • Magnesia component can be made using non fossil fuel energy and CO2 captured during production. Tec -Cements Tec & Eco-Cements Eco-Cements

  45. Tec & Eco-Cement Theory • Many Engineering Issues are Actually Mineralogical Issues • Problems with Portland cement concretes are usually resolved by the “band aid” engineering fixes. e.g. • Use of calcium nitrite, silanes, cathodic protection or stainless steel to prevent corrosion. • Use of coatings to prevent carbonation. • Crack control joins to mitigate the affects of shrinkage cracking. • Plasticisers to improve workability. • Portlandite and water are the weakness of concrete • TecEco remove Portlandite it and replacing it with magnesia which hydrates to Brucite. • The hydration of magnesia consumes significant water

  46. Tec & Eco-Cement Theory • Portlandite (Ca(OH)2) is too soluble, mobile and reactive. • It carbonates, reacts with Cl- and SO4- and being soluble can act as an electrolyte. • TecEco generally (but not always) remove Portlandite using the pozzolanic reaction and • TecEco add reactive magnesia • which hydrates, consuming significant water and concentrating alkalis forming Brucite which is another alkali, but much less soluble, mobile or reactive than Portlandite. • In Eco-Cements brucite carbonates forming hydrated compounds with greater volume

  47. Why Add Reactive Magnesia? • Reactive magnesia is added to maintain the long term stability of CSH. • Preventing a reduction in the Ca/Si ratio in CSH. • To remove water. • Reactive magnesia consumes water as it hydrates to possibly hydrated forms of Brucite. • To control long term Ph. • Reducing reactivity • To reduce shrinkage. • To make concretes more durable • Because significant quantities of carbonates are produced in porous substrates which are affective binders. The consequences of putting brucite through the matrix of a concrete in the first place need to be considered Reactive MgO is a new tool to be understood with profound affects on most properties

  48. Strength with Blend & Porosity Tec-cement concretes Eco-cement concretes High Porosity Enviro-cement concretes High OPC High Magnesia STRENGTH ON ARBITARY SCALE 1-100

  49. Eco-Cements • Eco-cements are similar but potentially superior to lime mortars because: • The calcination phase of the magnesium thermodynamic cycle takes place at a much lower temperature and is therefore more efficient. • Magnesium minerals are generally more fibrous and acicular than calcium minerals and hence add microstructural strength. • Water forms part of the binder minerals that forming making the cement component go further. In terms of binder produced for starting material in cement, eco-cements are much more efficient. • Magnesium hydroxide in particular and to some extent the carbonates are less reactive and mobile and thus much more durable.

  50. Eco-Cement Strength Development From air and water Mg(OH)2 + CO2 MgCO3.5H2O • Eco-cements gain early strength from the hydration of PC. • Later strength comes from the carbonation of brucite forming an amorphous phase, lansfordite and nesquehonite. • Strength gain in eco-cements is mainly microstructural because of • More ideal particle packing (Brucite particles at 4-5 micron are under half the size of cement grains.) • The natural fibrous and acicular shape of magnesium carbonate minerals which tend to lock together. • More binder is formed than with calcium • Total volumetric expansion from magnesium oxide to lansfordite is for example volume 811%.

More Related