1 / 46

Multiplicative Bounds for Metric Labeling

Multiplicative Bounds for Metric Labeling. M. Pawan Kumar École Centrale Paris. Joint work with Phil Torr , Daphne Koller. Metric Labeling. Variables V = { V 1 , V 2 , …, V n }. Metric Labeling. Variables V = { V 1 , V 2 , …, V n }. Metric Labeling. w ab d ( f(a),f(b)). θ b (f(b)).

wardah
Télécharger la présentation

Multiplicative Bounds for Metric Labeling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multiplicative Boundsfor Metric Labeling M. Pawan Kumar ÉcoleCentrale Paris Joint work with Phil Torr, Daphne Koller

  2. Metric Labeling Variables V= { V1, V2, …, Vn}

  3. Metric Labeling Variables V= { V1, V2, …, Vn}

  4. Metric Labeling wabd(f(a),f(b)) θb(f(b)) wab ≥ 0 θa(f(a)) d is metric Va Vb minf E(f) + Σ(a,b)wabd(f(a),f(b)) = Σaθa(f(a)) Labels L= { l1, l2, …, lh} Variables V= { V1, V2, …, Vn} Labeling f: { 1, 2, …, n}  {1, 2, …, h}

  5. Metric Labeling Va Vb minf E(f) + Σ(a,b)wabd(f(a),f(b)) = Σaθa(f(a)) NP hard Low-level vision applications

  6. Approximate Algorithms • Minka. Expectation Propagation for Approximate Bayesian Inference, UAI, 2001 • Murphy et al. Loopy Belief Propagation: An Empirical Study, UAI, 1999 • Winn et al. Variational Message Passing, JMLR, 2005 • Yedidiaet al. Generalized Belief Propagation, NIPS, 2001 • Besag. On the Statistical Analysis of Dirty Pictures, JRSS, 1986 • Boykov et al. Fast Approximate Energy Minimization via Graph Cuts, PAMI, 2001 • Komodakis et al. Fast, Approximately Optimal Solutions for Single and Dynamic • MRFs, CVPR, 2007 • Lempitsky et al. Fusion Moves for Markov Random Field Optimization, PAMI, 2010 • Chekuri et al. Approximation Algorithms for Metric Labeling, SODA, 2001 • Goemanset al. Improved Approximate Algorithms for Maximum-Cut, JACM, 1995 • Muramatsuet al. A New SOCP Relaxation for Max-Cut, JORJ, 2003 • Ravikumar et al. QP Relaxations for Metric Labeling, ICML, 2006 • Alahariet al. Dynamic Hybrid Algorithms for MAP Inference, PAMI 2010 • Kohliet al. On Partial Optimality in MultilabelMRFs, ICML, 2008 • Rotheret al. Optimizing Binary MRFs via Extended Roof Duality, CVPR, 2007 . . .

  7. Outline • Linear Programming Relaxation • Move-Making Algorithms • Comparison • Rounding-based Moves

  8. Integer Linear Program Minimize a linear function over a set of feasible solutions Indicator xa(i)  {0,1} for each variable Va and label li Number of facets grows exponentially in problem size

  9. Linear Programming Relaxation Indicator xa(i)  {0,1} for each variable Va and label li Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003

  10. Linear Programming Relaxation Indicator xa(i)  [0,1] for each variable Va and label li Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003

  11. Outline • Linear Programming Relaxation • Move-Making Algorithms • Comparison • Rounding-based Moves

  12. Move-Making Algorithms Space of All Labelings f

  13. Expansion Algorithm Variables take label lα or retain current label Boykov, Veksler and Zabih, 2001 Slide courtesy PushmeetKohli

  14. Expansion Algorithm Variables take label lα or retain current label Tree Ground House Status: Initialize with Tree Expand Ground Expand House Expand Sky Sky Boykov, Veksler and Zabih, 2001 Slide courtesy PushmeetKohli

  15. Outline • Linear Programming Relaxation • Move-Making Algorithms • Comparison • Rounding-based Moves

  16. Multiplicative Bounds f*: Optimal Labeling f: Estimated Labeling Σaθa(f(a)) + Σ(a,b)sabd(f(a),f(b)) ≥ Σaθa(f*(a)) + Σ(a,b)sabd(f*(a),f*(b))

  17. Multiplicative Bounds f*: Optimal Labeling f: Estimated Labeling Σaθa(f(a)) + Σ(a,b)sabd(f(a),f(b)) ≤ B Σaθa(f*(a)) + Σ(a,b)sabd(f*(a),f*(b))

  18. Multiplicative Bounds M = ratio of maximum and minimum distance

  19. Outline • Linear Programming Relaxation • Move-Making Algorithms • Comparison • Rounding-based Moves • Complete Rounding • Interval Rounding • Hierarchical Rounding

  20. Complete Rounding Treat xa(i)  [0,1] as probability that f(a) = i Cumulative probability ya(i) = Σj≤ixa(j) r ya(2) ya(i) ya(k) 0 ya(1) ya(h) = 1 Generate a random number r  (0,1] Assign the label next to r

  21. Complete Move Va Vb θab(i,k) = sabd(i,k) NP-hard

  22. Complete Move Va Vb d’(i,k) ≥ d(i,k) d’ is submodular θab(i,k) = sabd’(i,k)

  23. Complete Move Va Vb d’(i,k) ≥ d(i,k) d’ is submodular θab(i,k) = sabd’(i,k)

  24. Complete Move New problem can be solved using minimum cut Same multiplicative bound as complete rounding Multiplicative bound is tight

  25. Outline • Linear Programming Relaxation • Move-Making Algorithms • Comparison • Rounding-based Moves • Complete Rounding • Interval Rounding • Hierarchical Rounding

  26. Interval Rounding Treat xa(i)  [0,1] as probability that f(a) = i Cumulative probability ya(i) = Σj≤ixa(j) ya(2) ya(i) ya(k) 0 ya(1) ya(h) = 1 Choose an interval of length h’

  27. Interval Rounding Treat xa(i)  [0,1] as probability that f(a) = i Cumulative probability ya(i) = Σj≤ixa(j) r ya(i) ya(k) REPEAT Choose an interval of length h’ Generate a random number r  (0,1] Assign the label next to r if it is within the interval

  28. Interval Move Choose an interval of length h’ Va Vb θab(i,k) = sabd(i,k)

  29. Interval Move Choose an interval of length h’ Add the current labels Va Vb θab(i,k) = sabd(i,k)

  30. Interval Move Choose an interval of length h’ Add the current labels d’(i,k) ≥ d(i,k) d’ is submodular Solve to update labels Va Vb Repeat until convergence θab(i,k) = sabd’(i,k)

  31. Interval Move Each problem can be solved using minimum cut Same multiplicative bound as interval rounding Multiplicative bound is tight Kumar and Torr, NIPS 2008

  32. Outline • Linear Programming Relaxation • Move-Making Algorithms • Comparison • Rounding-based Moves • Complete Rounding • Interval Rounding • Hierarchical Rounding

  33. Hierarchical Rounding L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Hierarchical clustering of labels (e.g. r-HST metrics)

  34. Hierarchical Rounding L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Assign variables to labels L1, L2 or L3 Move down the hierarchy until the leaf level

  35. Hierarchical Rounding L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Assign variables to labels l1, l2 or l3

  36. Hierarchical Rounding L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Assign variables to labels l4, l5 or l6

  37. Hierarchical Rounding L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Assign variables to labels l7, l8 or l9

  38. Hierarchical Move L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Hierarchical clustering of labels (e.g. r-HST metrics)

  39. Hierarchical Move L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Obtain labeling f1 restricted to labels {l1,l2,l3}

  40. Hierarchical Move L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Obtain labeling f2 restricted to labels {l4,l5,l6}

  41. Hierarchical Move L1 L2 L3 l1 l2 l3 l4 l5 l6 l7 l8 l9 Obtain labeling f3 restricted to labels {l7,l8,l9}

  42. Hierarchical Move L1 L2 L3 f3(a) f3(b) f2(a) f2(b) f1(a) f1(b) Va Vb Move up the hierarchy until we reach the root

  43. Hierarchical Move Each problem can be solved using minimum cut Same multiplicative bound as hierarchical rounding Multiplicative bound is tight Kumar and Koller, UAI 2009

  44. Conclusion M = ratio of maximum and minimum distance

  45. Open Problems • Moves for general rounding schemes • Higher-order energy functions • Better comparison criterion

  46. Questions? http://www.centrale-ponts.fr/personnel/pawan

More Related