390 likes | 587 Vues
Optical Networking Primer. John Dyer TERENA http://www.terena.nl. Troy – 1200 BC. Troy – 1200 BC. Troy – 1200 BC. Troy – 1200 BC. Troy – 1200 BC. Troy to Agamemnon’s palace in Mycenae, 600km. le télégraphe optique. First real purpose built optical communication device
E N D
Optical NetworkingPrimer John Dyer TERENA http://www.terena.nl TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC TF-PR, Paris, September 2006
Troy – 1200 BC Troy to Agamemnon’s palace in Mycenae, 600km TF-PR, Paris, September 2006
le télégraphe optique • First real purpose built optical communication device • L'invention de : Claude Chappe -1791 TF-PR, Paris, September 2006
National Optical Network TF-PR, Paris, September 2006
Performance • 1794 - 230 km between Paris and Lille • By 1850 network grew to 556 stations covering 5000 km • 20 to 30 seconds per symbol per station in good weather conditions: More than 1 hour the characters on this slide TF-PR, Paris, September 2006
Electric Replaces Optical • 1816 Francis Ronalds • 8 miles of Iron wires • 1855 Giovanni Caselli • telegraph line between Paris and Lyon TF-PR, Paris, September 2006
1876 - Telecommunications goes analogue TF-PR, Paris, September 2006
Analogue Signals Attenuation Output Source Noise TF-PR, Paris, September 2006
Analogue over copper • Copper wire has narrow bandwidth • Insufficient for backbones/long haul at high speed TF-PR, Paris, September 2006
Sending Digital Signals Power Volts 1 1 1 1 10mW 5 0 0 0 0 0mW 0 time time Coaxial cable TF-PR, Paris, September 2006
Digital over Analogue • 1950’s US Defence • 1958 - DARPAnet • 1962 – Bell 103 modem • 300 bits per second (about 40 characters per second) TF-PR, Paris, September 2006
The move to optical transmission • 1975 – Bell – 14 Km of waveguide in New Jersey, US • 1977 – Bell – live telephony in Chicago • 1977 – BT, UK live telephony • 1986 – Fibre link across English channel • 1988 – TAT-8 First Transatlantic Fibre • 280 Mbps and retired in 2002 (14 years) TF-PR, Paris, September 2006
Fibre Transmission TF-PR, Paris, September 2006
Fibre Optic Cables TF-PR, Paris, September 2006
Transmission • Chromatic Dispersion • Phase Dispersion • Attenuation TF-PR, Paris, September 2006
Digital can be cleanly regenerated Attenuation Output Regeneration Source Noise TF-PR, Paris, September 2006
Building Blocks TF-PR, Paris, September 2006
Building an Optical Network TF-PR, Paris, September 2006
Electrical & Optical Devices Electrical Domain Optical Domain emerging Classical Electrical Switch O-E-O Switch All Optical Switch TF-PR, Paris, September 2006
Optical Switches - MEMs TF-PR, Paris, September 2006
Electromagnetic Spectrum lambda TF-PR, Paris, September 2006
Multiple lambdas 1300nm 1600nm 850nm Don’t forget – λ’s in non-visible TF-PR, Paris, September 2006
Single Wave Length in a single fibre pair TF-PR, Paris, September 2006
Wave Division Multiplexing (WDM) in a single pair TF-PR, Paris, September 2006
Generalised IP Network TF-PR, Paris, September 2006
Backbone Core Optical TF-PR, Paris, September 2006
A Need full Internet routing B Need VPN services on/and full Internet routing C Need very fat pipes, limited multiple Virtual Organizations A B C User Classes Bandwidth consumed Number of users DSL GigE LAN Source: Cees de Laat, UvA TF-PR, Paris, September 2006
Hybrid Networking TF-PR, Paris, September 2006
Getting Access to Fibres Flexibility & control complexity • Buy or Lease a service • IP level or optical path • IRU • (Indefeasible Right of Use ) • Dig it yourself TF-PR, Paris, September 2006
GLIFGlobal Lambda Integrated Facility TF-PR, Paris, September 2006
GLIF Open Lightpath Exchanges • GLIF lambdas are interconnected through established exchange points known as GOLEs. • GOLEs are comprised of equipment capable of terminating lambdas and performing lightpath switching, allowing end-to-end connections • Open connection policy TF-PR, Paris, September 2006
Established GOLEs • CANARIE-StarLight, Chicago (CANARIE) • CANARIE-PNWGP, Seattle (CANARIE) • CERN, Switzerland (CERN) • KRLight, Seoul (KISTI) • MAN LAN, New York (Internet2, NYSERNET, Indiana Uni & IEEAF) • NetherLight, Amsterdam (SURFnet) • NorthernLight, Stockholm (NORDUnet) • Pacific Northwest GigaPoP, Seattle (Consortium of research and education orgs ) • StarLight, Chicago (UIC/EVL, NWU/iCAIR & Argonne) • T-LEX, Tokyo (WIDE) • UKLight, London (UKERNA) • UltraLight, Los Angeles (Caltech/NSF) TF-PR, Paris, September 2006
GLIF Working Groups • TERENA provides GLIF secretariat function • Governance & Growth • Chair: Kees Neggers (SURFnet) • Technical Issues • Co-Chairs: Erik-Jan Bos (SURFnet) & René Hatem (CANARIE) • Control Plane & Grid Integration Middleware • Chair: Gigi Karmous-Edwards (MCNC) • Research & Applications • Co-Chairs: Maxine Brown (UIC) & Larry Smarr (UCSD) TF-PR, Paris, September 2006
References • The Telegraph Of Claude Chappe -An Optical Telecommunication Network For The XVIIIth Century http://services3.ieee.org/organizations/history_center/cht_papers/dilhac.pdf • Data Communications: The First 2500 Years http://spinroot.com/gerard/pdf/hamburg94b.pdf • A Survey of MEMS-Enabled Optical Devices – (January 2006) http://www.iec.org/newsletter/jan06_2/broadband_1.html • Wavelength switches and the automated optical network – Status & outlook (2005) http://www.telenor.com/telektronikk/volumes/pdf/2.2005/Page_081-086.pdf • GLIF website http://www.glif.is TF-PR, Paris, September 2006
Good luck with finding your way home TF-PR, Paris, September 2006