1 / 30

Understanding Set Theory: Concepts, Operations, and Examples by Wibisono Sukmo Wardhono, ST, MT

Explore the foundational concepts of set theory with Wibisono Sukmo Wardhono, ST, MT. This comprehensive overview includes essential operations like union, intersection, and difference, demonstrated with practical examples. Learn how to identify empty sets, subsets, and cardinality, as well as the significance of equivalence and disjoint sets. Perfect for students and enthusiasts looking to strengthen their understanding of mathematics. Visit the lecture page for additional resources and clarifications.

winona
Télécharger la présentation

Understanding Set Theory: Concepts, Operations, and Examples by Wibisono Sukmo Wardhono, ST, MT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id Any question ?

  2. Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id himpunan

  3. 3

  4. Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id A = {2, 3, 5, 7, 11} A = {x | x < 12; x bilangan prima}

  5. 3A 9A 5

  6. P N Z Q R C U 6

  7. Kardinalitas • n(A) atau | A| | A| = 5

  8. K = { } K = ⌀ Himpunan kosong(null set) 9

  9. irisan U A B A∩B

  10. gabungan U A B A∪B

  11. selisih U A B A-B=A∩B

  12. beda-setangkup A-B=A∩B

  13. Komplemen U A A = { x | x∈U, x ∉A}

  14. Himpunan Bagian (Subset) U B A A⊆B

  15. A⊆A ⌀ ⊆ A Jika A⊆B dan B ⊆ C maka A⊆C Teorema Subset 16

  16. A⊆B A ⊂ B 17

  17. A = {1, 2, 3} B = {1, 2, 3, 4, 5} AC dan CB Tentukan semua kemungkinan himpunan C 18

  18. Himpunan yang Sama A = {8, 2, 4, 8, 2, 2, 6} B = {x | x adalah empat bilangan genap positif pertama} 19

  19. Himpunan yang ekivalen A = {a, b, c} B = {sm*sh, cherrybelle, JKT48} 20

  20. DISJOINT ( A // B ) A = {a, b, c} B = {sm*sh, cherrybelle, JKT48} ? ∃xA = ∃xB 21

  21. Cartesian Product A = {a, b, c} B = {sm*sh, cherrybelle, JKT48} 22

  22. Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id B={b|∀b(b+2<7),b∈N} Tentukan elemen-elemen Himpunan kuasa & kardinalnya Tentukan seluruh proper subset

  23. Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id B={b|∀b(b+2<7),b∈N} Tentukan elemen-elemen Himpunan kuasa & kardinalnya Tentukan seluruh proper subset

  24. U = {1, 2, 3, 4, … , 10} A = {a | a/3 ∈ P, a<10} Tentukan A 25

  25. U A 1 5 6 9 2 8 3 7 4 10 A = { x | x∈U, x ∉A}

  26. A = {sm*sh, Super Junior, Shinee} B = {Cherrybelle, AKB48, SNSD} Tentukan |A ∪ B| 27

  27. U A B |A ∪ B|= |A| + |B|

  28. A = {sm*sh, Hitz, Chibby, JKT48} B = {JKT48, Chibby, AKB48, SNSD} Tentukan |A ∪ B| 29

  29. U A B |A ∪ B|= |A| + |B| - |A∩B|

More Related