330 likes | 420 Vues
Learn about Wilsonian matching concepts, bare theory parameters, quantum effects, and physical quantities in low and high energy regions. Get insights on Axialvector current correlators, Operator Product Expansion, and renormalization scales. Understand Wilsonian Matching Conditions, Determination of Bare Parameters, and Results of the Matching in QCD and EFT. Discover physical predictions, including ρ-γ mixing strength and ρππ coupling. Explore the π+ - π0 Mass Difference and its implications on stability of U(1)em symmetry and little Higgs mass. Calculate bare parameters and predict quantum corrections using renormalization scale improvements.
E N D
6. Wilsonian Matching
◎ Generating functional in QCD J : external source fields ◎ Generating functional in EFT F : parameters of EFT ☆ Wilsonian matching bare theory
high energy QCD quarks and gluons L matching HLS r and p Bare theory bare parameters Quantum effects low energy Quantum theory physical quantities
☆ Axialvector current correlator in space-like region ◎ low energy limit・・・ π dominance
◎ high energy region ・・・Operator Product Expansion (OPE) ・・・ renormalization scale of QCD 2 F (0) π μ 2 Λ ~ 1 GeV
◎ Around Q2~ Λ2~ (1 GeV)2 4 including O(p ) terms 2 2 F (0) F (Λ) π π ・ Integrating out quarks and gluons ・・・ not well-defined degrees of freedom in the low energy region ・ bare HLS Lagrangian Λ
# Λ > μ > m ・・・ through RGE ρ HLS OPE 2 2 F (0) F (μ) m π π ρ μ 2 Λ ◎ Λ > μ ・・・ inclusion of quantum corrections from π and ρ
# m> μ ・・・ through the RGE in ChPT ρ 2 2 F (μ) F (0) m π π ρ μ 2 HLS OPE ChPT Λ effect of finite renormalization
6.2 Wilsonian Matching Conditions
◎ QCD (OPE) Matching ☆Axialvector and Vector Current Correlators ◎ HLS
6.3 Determination of the Bare Parameters
☆ Bare parameters Λ = 1.0 ~ 1.2 GeV • large enough for validity of OPE • small enough for validity of HLS ☆ Matching Scale Λ ☆ Inputs 3 Wilsonian matching conditions ・ Inputs for OPE
6.4 Results of the Wilsonian Matching
☆ Parameters at m scale ρ bare parameters → (RGE) → parameters at m ρ
4 quantities directly related to experiment ☆ Physical Predictions
◎ ρ- γ mixing strength ・ tree ・ loop through RGE ・ typical prediction cf :
◎ Gasser-Leutwyler’s parameter L 10 ・ typical prediction cf :
loop effects through RGE ◎ ρππ coupling ・ bare Lagrangian ・ effective interaction ・ typical prediction cf :
◎ Gasser-Leutwyler’s parameter L 9 ・ typical prediction for cf :
◎ parameter a(0) ・・・ characterize Vector dominance loop effects through RGE ・ bare Lagrangian ・ effective interaction ・ typical prediction ・・・ VD is well satisfied
+ 0 ☆ Why π - π mass difference ? ◎ ⇔ vacuum structure M.E. Peskin 80’, J. Preskil 80’ ⇒ stability of U(1)em symmtric vacuum ⇒ instability : U(1)em is broken ◎ ⇔ mass of little Higgs 6.5 π+ - π0 Mass Difference and Wilsonian Matching M.H. M.Tanabashi and K.Yamawaki, Phys. Lett. B 568 103 (2003)
☆ How to calculate ? ◎ A formula from Dashen’s theorem bare parameter improve by RGE
☆ Prediction Quantum correction through RGE > 0 in good agreement