1 / 14

Transformations

Transformations. Fourier transformation. forward inverse. f(t) = cos(2*  * 5 *t) + cos(2*  * 10 *t) + cos(2*  * 20 *t) + cos(2*  * 50 *t) . Spectrum, phase. In general F(u) is a complex function:

zanna
Télécharger la présentation

Transformations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transformations Theo Schouten

  2. Fourier transformation forward inverse f(t) = cos(2**5*t) + cos(2* *10*t) + cos(2* *20*t) + cos(2* *50*t) Theo Schouten

  3. Spectrum, phase In general F(u) is a complex function:   F(u) = R(u) + j I(u) = | F(u) | ej (u) | F(u) | =  (R2(u) + I2(u) ) : the Fourier spectrum of f(x)(u) = tan-1 ( I(u) / R(u) ) : the phase angle of f(x) Theo Schouten

  4. 2 D Fourrier F(u,v) =     f(x,y) e-j2(ux+vy) dx dyf(x,y) =      F(u,v) e+j2(ux+vy)du dv Theo Schouten

  5. Convolution • c(x) = f(x)  g(x) =  f()g(x-) d  • C(u) = F(u)G(u) • Point spread function of a lens • Light on ideal point (,) spread over pixels (x,y) according h(x,,y, ) • p(x,y) =   w (,) h(x,,y, ) d  d  • Linear: h(x,,y, ) = h(x-,y- ) • p(x,y) =   w (,) h(x-,y- ) d  d  = w  h • P(u,v) = W(u,v)H(u,v) Theo Schouten

  6. Discrete Fourier Transformation In 2-D the DFT becomes: F[u,v] = 1/MN x=0M-1y=0 N-1 f[x,y]e -j2 (xu / M + yv / N)f[x,y]  =  u=0M-1v=0N-1  F[u,v] e+j2(xu / M + yv / N) Theo Schouten

  7. Fast Fourier Transformation • To calculate F[u] for u=0,1...N-1 it takes N*N multiplications and N*(N-1) summations of complex numbers (e... in a table). • The complexity of a DFT is therefore proportional to N2. • Transform 1 DFT of N terms into 2 DFTs of N/2 terms. • We can apply this recursively and reach a complexity of N log2N. • special purpose hardware chips wirh parallel processing Theo Schouten

  8. Use in CT g  (x') =   f(x',y') dy'    x' = x cos   + y sin     y'= -x sin   +y cos FT( g  (x')) = F(u cos , u sin ). Theo Schouten

  9. Other transformations • DFT example of whole class of transformations • T(u) = x=0  N-1 f(x) g(x,u)    with g the forward transformation kernelf(x)  = u=0  N-1 T(u) h(x,u)   with h the inverse transformation kernel • Discrete Cosine: cos( (2x+1)u / 2N) , JPEG, MPEG • T(u,v) = x=0  N-1y=0  N-1  f(x,y) g(x,y,u,v)f(x,y)  = u=0  N-1v=0  N-1 T(u,v) h(x,y,u,v) • g(x,y,u,v) =  g1(x,u) g2(y,v) : separable: 2D = N 1D Theo Schouten

  10. Continuous wavelets Mexican-hat (x)= c (1-x2) exp(-x2/2) the second derivative of a Gaussian Construction of the Morlet wavelet as a sinus modeled by a Gaussian function • set of wavelet basis functions s,t(x) : • s,t(x) = ( (x-t) / s) / s, s > 0 the scale and  t the translation • The CWT of f(x) is then: • Wf(s,t) = <f, s,t> =  f(x) s,t(x) dx • f(x) = (1 / C )   Wf(s,t) s,t(x) dt ds/s2 Theo Schouten

  11. Continuous wavelet transform Theo Schouten

  12. Time frequency tilings In the discrete wavelet transform one works with factors 2 Also here there is a Fast Wavelet Transformation Theo Schouten

  13. Example 3 scale 2D FWT Theo Schouten

  14. Example Theo Schouten

More Related