Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis PowerPoint Presentation
Download Presentation
Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis

play fullscreen
1 / 190
Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis
78 Views
Download Presentation
zohar
Download Presentation

Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Inflation, infinity, equilibrium and the observable Universe Andreas Albrecht UC Davis KIPAC Seminar Jan 7 2013 A. Albrecht @ Stanford Jan 7 2013

  2. A. Albrecht @ Stanford Jan 7 2013

  3. A. Albrecht @ Stanford Jan 7 2013

  4. E A. Albrecht @ Stanford Jan 7 2013

  5. Cosmic Inflation: • Great phenomenology, but • Original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. A. Albrecht @ Stanford Jan 7 2013

  6. Cosmic Inflation: • Great phenomenology, but • Original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. This Talk A. Albrecht @ Stanford Jan 7 2013

  7. Cosmic Inflation: • Great phenomenology, but • Original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. • OR: Just be happy we have equations to solve? A. Albrecht @ Stanford Jan 7 2013

  8. OUTLINE Big Bang & inflation basics Eternal inflation de Sitter Equilibrium cosmology Cosmic curvature from de Sitter Equilibrium cosmology A. Albrecht @ Stanford Jan 7 2013

  9. OUTLINE Big Bang & inflation basics Eternal inflation de Sitter Equilibrium cosmology Cosmic curvature from de Sitter Equilibrium cosmology A. Albrecht @ Stanford Jan 7 2013

  10. Friedmann Eqn. A. Albrecht @ Stanford Jan 7 2013

  11. Friedmann Eqn. A. Albrecht @ Stanford Jan 7 2013

  12. Friedmann Eqn. Hubble parameter (“constant”, because today it takes ~10Billion years to change appreciable) A. Albrecht @ Stanford Jan 7 2013

  13. Friedmann Eqn. Hubble parameter (“constant”, because today it takes ~10Billion years to change appreciable) “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  14. Friedmann Eqn. Curvature “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  15. Friedmann Eqn. Curvature Relativistic Matter “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  16. Friedmann Eqn. Curvature Non-relativistic Matter Relativistic Matter “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  17. Friedmann Eqn. Dark Energy Curvature Non-relativistic Matter Relativistic Matter “Scale factor” A. Albrecht @ Stanford Jan 7 2013

  18. Evolution of Cosmic Matter A. Albrecht @ Stanford Jan 7 2013

  19. Evolution of Cosmic Matter A. Albrecht @ Stanford Jan 7 2013

  20. Evolution of Cosmic Matter A. Albrecht @ Stanford Jan 7 2013

  21. The curvature feature/“problem” A. Albrecht @ Stanford Jan 7 2013

  22. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  23. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  24. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  25. The curvature feature/“problem” A. Albrecht @ Stanford Jan 7 2013

  26. The curvature feature/“problem” ! A. Albrecht @ Stanford Jan 7 2013

  27. The monopole “problem” A. Albrecht @ Stanford Jan 7 2013

  28. The monopole “problem” ! A. Albrecht @ Stanford Jan 7 2013

  29. Friedmann Eqn. Dark Energy Curvature Non-relativistic Matter Relativistic Matter A. Albrecht @ Stanford Jan 7 2013

  30. Now add cosmic inflation Friedmann Eqn. Dark Energy Inflaton Curvature Non-relativistic Matter Relativistic Matter A. Albrecht @ Stanford Jan 7 2013

  31. Now add cosmic inflation Friedmann Eqn. Dark Energy Inflaton Curvature Non-relativistic Matter Relativistic Matter  A. Albrecht @ Stanford Jan 7 2013

  32. Now add cosmic inflation Friedmann Eqn. Dark Energy Inflaton Curvature Non-relativistic Matter Relativistic Matter A. Albrecht @ Stanford Jan 7 2013

  33. The inflaton: ~Homogeneous scalar field obeying Cosmic damping Coupling to ordinary matter All potentials have a “low roll” (overdamped) regime where A. Albrecht @ Stanford Jan 7 2013

  34. The inflaton: ~Homogeneous scalar field obeying Cosmic damping Coupling to ordinary matter All potentials have a “low roll” (overdamped) regime where A. Albrecht @ Stanford Jan 7 2013

  35. Add a period of Inflation: A. Albrecht @ Stanford Jan 7 2013

  36. With inflation, initially large curvature is OK: A. Albrecht @ Stanford Jan 7 2013

  37. With inflation, early production of large amounts of non-relativistic matter (monopoles) is ok : A. Albrecht @ Stanford Jan 7 2013

  38. With inflation, early production of large amounts of non-relativistic matter (monopoles) is ok : A. Albrecht @ Stanford Jan 7 2013

  39. Inflation detail: A. Albrecht @ Stanford Jan 7 2013

  40. Inflation detail: A. Albrecht @ Stanford Jan 7 2013

  41. Hubble Length A. Albrecht @ Stanford Jan 7 2013

  42. Hubble Length (aka ) A. Albrecht @ Stanford Jan 7 2013

  43. A. Albrecht @ Stanford Jan 7 2013

  44. A. Albrecht @ Stanford Jan 7 2013

  45. A. Albrecht @ Stanford Jan 7 2013

  46. A. Albrecht @ Stanford Jan 7 2013

  47. A. Albrecht @ Stanford Jan 7 2013

  48. A. Albrecht @ Stanford Jan 7 2013

  49. A. Albrecht @ Stanford Jan 7 2013

  50. A. Albrecht @ Stanford Jan 7 2013