1 / 44

Cell division

Learn about cell division processes, types of cell division (mitosis and meiosis), and observable patterns of inheritance in genetics. Explore genetic terms, inheritance rules, pedigrees, Punnett squares, and variations in Mendelian genetics. Dive into chromosome variations, sex determination, mutations, and genetic testing before birth.

Télécharger la présentation

Cell division

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cell division When one cell divides into 2 identical clones. How then are we different?

  2. Types of cell division • Mitosis one mother cell into 2 daughter cells • In growth, replacement, are identical to one another • Meiosis one mother cell into 4 daughter cells • Production of sperm (4) and egg (1+ 3 polar bodies) • Will result in different individuals with differences.

  3. Observable Patterns of Inheritance What you are is a result of genetic expression How Simple Traits Are Passed to the Next Generation

  4. Genetic Terms: • Genes: carry encoded information about specific traits • Locus: the position of a gene on a chromosome • Homologous chromosome: two chromosomes that contain the same genes in diploid cells

  5. More genetic terms • Alleles: various molecular forms of a gene for some trait. (same yet different) • Homozygous: both alleles are the same • Heterozygous: the alleles differ • Dominant: (A) allele that shows the phenotype • Recessive: (a) allele that is masked

  6. More gene words • Homozygous dominant: AA • Heterozygous: Aa • Homozygous recessive: aa • Genotype: is the sum of all genes • Phenotype: genes that are expressed

  7. Mendels three basic rules • Inheritance is controlled by discrete units (genes) • Each diploid organism has two units for each trait (one from mom and one from dad) • In parents different units assort independently into gametes (law of segregtion) • if dad is heterozygous you have 50% probability of getting one or the other allele

  8. The Pedigree • Circles are females • Boxes are males • Empty boxes are normal (average) • Filled boxes have the trait of interest • A horizontal line indicates a mating or a brother sister relationship

  9. The Punnett Square • Provides a simple way to view patters of inheritance for a single pair of alleles

  10. The Monohybrid cross A A • Mating of two individuals with contrasting forms of one trait • one of these traits will not show in the first generation Possible Male gametes A A A A A Possible Female gametes A A a a a

  11. The testcross Homozygous recessive a a • The old way to determine if someone is a heterozygote A A a A a a a Heterozygote ? ? ?

  12. Independent assortment • When 2 different traits assort they do so without any affect on one another • 16 possible allele combinations exist 9:3:3:1 ratio in a dihybrid cross

  13. Variations on Mendelian Genetics • Codominance: both alleles are expressed in heterozygotes like blood type • Multiple effects: one gene may have many phenotypes, cystic fibrosis, osteogenesis imperfecta • Penetrance: phenotype depends on other genes • Polygenic traits: result from 2 or more genes skin color, eye color, behavior, IQ

  14. Height controlled by 3 genes

  15. Chromosome variations The chromosomal basis of inheritance

  16. Gene: unit of a heritable trait • genes are located on chromosomes (locus) • genes of different chromosomes are inherited independently • genes on the same chromosome travel together

  17. Autosomes consistently 44 chromosomes of the same quantity and type Sex chromosomes: determine gender females XX males XY all have 22 other chromosomes that are alike Autosomes and sex chromosomes

  18. Karyotype: • Is a visualization of the chromosomes where the chromosomes are lined up by size. • Is used to determine if an abnormality occurred.

  19. The sex chromosomes • One of the few genes on the Y chromosome is the sry “make determining gene” • Only one copy of the X chromosome is required by the cells, the extra copy in females is stored in a condensed form • females are genetic mosaics because cell may express different X chromosomes

  20. Sex determination • Gender is determined by the father’s sperm • X bearing sperm fertilizes an egg, a female results • Y bearing sperm fertilizes an egg, a male results • Y has the male determining gene

  21. X chromosome inactivation in females • Most or all of one X chromosome is switched off in early development of the female • the female body is a mosaic of cells in which one or the other X chromosome is inactivated

  22. Chromosome Linkage • What chromosome a gene is located on • Chromosome #7 has CF • X is hemophilia • Y is TV clicker gene

  23. Mutations • Are a change in the sequence of a gene (DNA is altered) • can be • Neutral - no change in the information • beneficial - makes and organism better • harmful - can kill the organism

  24. Genetic testing before birth

  25. Human Genetic analysis • The pedigree, be able to write one out • abnormal: genetic condition that is a deviation from the usual or average and is not life threatening • genetic disorder: conditions that cause medical problems • genetic counseling: determining the probabilities and risks of having children

  26. Patterns Autosomal Inheritance Most of your genes have nothing to do with sex

  27. Autosomal Recessive • Both parents must be a carrier • only homozygous children are affected • 3:1 ratio of normal to affected children • Phenylketonuria: mental retardation • Cystic fibrosis: build up of mucus in lungs • Tay-Sachs disease: lipid buildup in brain

  28. Autosomal dominant Inheritance • Allele is expressed in each generation • Dwarfism: 4 feet in height • Progeria: rapid aging dies at age 10 • Huntington’s disease: degeneration of nervous system after age 40.

  29. Patterns of X linked inheritance • X linked recessive occurs more in males than females • Hemophilia A, Duchenne muscular dystrophy, Color blindness • Testicular feminizing syndrome • mutation in the X chromosome on male results in defective receptors for the male sex hormones • embryo develops into an apparent female

  30. Chromosomes can be abnormal • Deletion • Duplication • Insertion • Translocation

  31. A woman with cystic fibrosis comes into your Genetic counseling clinic. She is going to marry her first cousin. What she wants to know that if they have children what is the probability that they will have a child with cystic fibrosis. Use your knowledge of genetics to give her an idea of the different probabilities.

  32. Generation A B T T T T C T

  33. What does the filled figure mean? What figure represents mails, which females. In what generation are the woman’s grandparents. Now that you know this information , what is the woman’s possibility of having a child with Cystic fibrosis? Using this example, explain why it is not a good idea for closely related individuals to have children together?

  34. The widow’s peak is a feature where the hairline dips down the forehead in a v like pattern. Look at 3 generations of your family Draw a pedigree and give the names of all the members of your family. Indicate weather they have a widows pear or if they have a straight hairline. Indicate weather you think the widows peak is dominant or recessive give your reasoning. If your family is all straight or widows peak describe what type of results you would need in order to determine if a trait is dominant or recessive.

More Related