1 / 33

Hernan G. Arango, Rutgers University (arango@imcs.rutgers)

A Community T errain-following O cean M odeling S ystem. Hernan G. Arango, Rutgers University (arango@imcs.rutgers.edu) Tal Ezer, Pricenton University (ezer@splash.princeton.edu) FTP File: TOMS.tar. OBJECTIVES.

dianne
Télécharger la présentation

Hernan G. Arango, Rutgers University (arango@imcs.rutgers)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Community Terrain-following Ocean Modeling System Hernan G. Arango, Rutgers University (arango@imcs.rutgers.edu) Tal Ezer, Pricenton University (ezer@splash.princeton.edu) FTP File: TOMS.tar

  2. OBJECTIVES • To design, develop and test an expert ocean modeling system for scientific and operational applications • To support advanced data assimilation strategies • To provide a platform for coupling with operational atmospheric models (like COAMPS) • To support massive parallel computations • To provide a common set of options for all coastal developers with a goal of defining an optimum coastal/relocatable model for the navy

  3. APPROACH • Use state-of-the-art advances in numerical techniques, subgrid-scale parameterizations, data assimilation, nesting, computational performance and parallelization • Modular design with ROMS as a prototype • Test and evaluate the computational kernel and various algorithms and parameterizations • Build a suite of test cases and application databases • Provide a web-based support to the user community and a linkage to primary developers

  4. CHALLENGE “The complexity of physics, numerics, data assimilation, and hardware technologyshould betransparent to the expert and non-expert USER”

  5. TOMS KERNEL ATTRIBUTES • Free-surface, hydrostatic, primitive equation model • Generalized, terrain-following vertical coordinates • Boundary-fitted, orthogonal curvilinear, horizontal coordinates on an Arakawa C-grid • Non-homogeneous time-stepping algorithm • Accurate discretization of the baroclinic pressure gradient term • High-order advection schemes • Continuous, monotonic reconstruction of vertical gradients to maintain high-order accuracy

  6. Dispersive Properties of Advection 5/2 Parabolic Splines 2 10 Vs Finite Centered Differences 6 3/2 8 K(k) • x 4 1 2 1/2 /4 3/4 /2 kx

  7. TOMS SUBGRID-SCALE PARAMETERIZATION • Horizontal mixing of tracers along level, geopotential, isopycnic surfaces • Transverse, isotropic stress tensor for momentum • Local, Mellor-Yamada, level 2.5, closure scheme • Non-local, K-profile, surface and bottom closure scheme

  8. TOMS BOUNDARY LAYERS • Air-Sea interaction boundary layer from COARE (Fairall et al., 1996) • Oceanic surface boundary layer (KPP; Large et al., 1994) • Oceanic bottom boundary layer (inverted KPP; Durski et al., 2001)

  9. Boundary Layer Schematic 1. ABL 2. SBL 3. BBL 4. WCBL L o n g w a v e Shortwave O E v a p H H O H H

  10. TOMS BOUNDARY LAYERS • Air-Sea interaction boundary layer from COARE (Fairall et al., 1996) • Oceanic surface boundary layer (KPP; Large et al., 1994) • Oceanic bottom boundary layer (inverted KPP; Durski et al., 2001) • Wave / Current / Sediment bed boundary layer (Styles and Glenn, 2000) • Sediment transport

  11. TOMS MODULES • Lagrangian Drifters (Klinck, Hadfield) • Tidal Forcing (Hetland, Signell)

  12. Gulf of Maine M2 Tides Surface Elevation (m)

  13. TOMS MODULES • Lagrangian Drifters (Klinck, Hadfield) • Tidal Forcing (Hetland, Signell) • River Runoff (Hetland, Signell, Geyer)

  14. Hudson River Estuary 30 -5 25 -10 20 Salinity (PSS) Depth (m) -15 15 -20 10 -25 5 25 5 15 20 10 Distance (km)

  15. TOMS MODULES • Lagrangian Drifters (Klinck, Hadfield) • Tidal Forcing (Hetland, Signell) • River Runoff (Hetland, Signell, Geyer) • Biology Fasham-type Model (Moisan, Shchepetkin) • EcoSim Bio-Optical Model (Bissett)

  16. TOMS CODE DESIGN • Modular, efficient, and portable Fortran code (F77+, F90) • C-preprocessing managing • Multiple levels of nesting • Lateral boundary conditions options for closed, periodic, and radiation • Arbitrary number of tracers (active and passive) • Input and output NetCDF data structure • Support for parallel execution on both shared- and distributed -memory architectures

  17. TOMS PARALLEL DESIGN • Coarse-grained parallelization

  18. PARALLEL TILE PARTITIONS 8 x 8 Ny } } Nx

  19. TOMS PARALLEL DESIGN • Coarse-grained parallelization • Shared-memory, compiler depend directives MAIN (OpenMP standard) • Distributed-memory (MPI; SMS) • Optimized for cache-bound computers • ZIG-ZAG cycling sequence of tile partitions • Few synchronization points (around 6) • Serial and Parallel I/O (via NetCDF) • Efficiency 4-64 threads

  20. TOMS DATA ASSIMILATION • Nudging • Optimal Interpolation (OI) • Tangent linear and Adjoint algorithms • 4D VARiational data assimilation (4DVAR) and Physical Statistical Analysis System (PSAS) algorithms • Inverse Ocean Modeling System (IOMS) • Ensemble prediction platform based on singular value decomposition • Error Subspace Statistical Estimation (ESSE)

  21. + ESSE Flow Diagram ESSE Smoothing via Statistical Approximation ^ DY0/N Field Initialization Central Forecast ^ ^ Y0 Ycf(-) Ymp(-) Shooting Sample Probability Density Measurement Model OA via ESSE Measurement Model Select Best Forecast Options/ Assumptions Mean SVDp Performance/ Analysis Modules Perturbations Minimum Error Variance Within Error Subspace (Sequential processing of Observations) Adaptive Error Subspace Learning + Scalable Parallel Ensemble Forecast Error Subspace Initialization Normalization Peripherals Analysis Modules Key Convergence Criterion Continue/Stop Iteration Breeding Field Operation Assumption DE0/N + DP0/N - - + Most Probable Forecast + Synoptic Obs A Posteriori Residules dr (+) Historical, Synoptic, Future in Situ/Remote Field/Error Observations d0R0 + - - Data Residuals Measurement Error Covariance ^ d-CY(-) Ensemble Mean + + ^ eq{Yj(-)} Gridded Residules ^ Y(-) + - ^ ^ j=1 Y(+) Y(+) Y1 Yj Yq ^ - Y1 Yj Yq + 0 + - E(-) P(-) ^ - + 0 + + - +/- ^ E0 P0 j=q 0 uj(o,Ip) with physical constraints Continuous Time Model Errors Q(t) Ea(+) Pa(+) E(+) P(+)

  22. PRESSURE GRADIENT FORCE • Density Jacobian Class (Blumberg and Mellor, 1987; Song 1998; Song and Wright 1998) • More Accurate • Error vanishes with linear density profiles • Pressure Jacobian Class (Lin 1998; Shchepetkin and McWilliams, 2001) • JEBAR consistent • Conserve Energy

  23. Seamount Test Case (64 x 64 x 20) dx = dy = 8 km

  24. Second Order Advection Scheme Models with 2nd order advection scheme POM ROMS Surface Elevation Anomaly Stream Function Anomaly

  25. Advection Schemes in ROMS (Seamount Case) V Second Order Centered Third Order Upstream Bias Fourth Order Centered

  26. Pressure Gradient Errors POM POM (6th order) V (cm/s) U (cm/s) ROMS X (km)

  27. Relative CPU per time step Percentage

  28. RESULTS (YEAR 1) • Build TOMS from ROMS prototype • Mellor-Yamada, level 2.5 • Passive and active open boundary conditions • Tidal forcing • River runoff • Lagrangian drifters • Data assimilation • Inter-comparison between POM and ROMS • Evaluation of time-stepping, advection, and pressure gradient algorithms • Initial development of TOMS web site

  29. COLLABORATORS • Bennett et al. (FNMOC; OSU) • Chassignet / Iskandarani et al. (RSMAS) • Cornuelle / Miller (SIO) • Geyer (WHOI) • Hetland (TAMU) • Lermusiaux (Harvard) • Mellor (Pricenton) • Moore (U. Colorado) • Shchepetkin (UCLA) • Signell (SACLANT; USGS)

  30. OTHER COLLABORATORS • Chao / Song (JPL) • Preller / Martin (NRL) • Naval Operational Community • POM Ocean Modeling Community • ROMS / SCRUM Ocean Modeling Community

  31. TRANSITION PATHS • To Be Determined !!! • Potential Users: • NAVO • FNMOC • NOAA • USCG

  32. PUBLICATIONS • Chassignet et al., 2000: Damee modeling review • Ezer, 2000: Mixed-layer evaluation • Ezer and Mellor, 2000: POM Damee application • Haidvogel et al., 2000: ROMS Damee application • Malanotte-Rizzoli et al., 2000: ROMS Damee • Mellor, 2001: Improved turbulence scheme • Mellor et al., 2001: Generalized vertical coordinate

  33. Initial web page: www.aos.princeton.edu/WWWPUBLIC/ezer/TOMS

More Related