16 chemistry of benzene electrophilic aromatic substitution n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
16. Chemistry of Benzene: Electrophilic Aromatic Substitution PowerPoint Presentation
Download Presentation
16. Chemistry of Benzene: Electrophilic Aromatic Substitution

play fullscreen
1 / 52

16. Chemistry of Benzene: Electrophilic Aromatic Substitution

1144 Views Download Presentation
Download Presentation

16. Chemistry of Benzene: Electrophilic Aromatic Substitution

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry’s Organic Chemistry, Chapter 16

  2. Benzene is aromatic: a cyclic conjugated compound with 6  electrons Reactions of benzene lead to the retention of the aromatic core Electrophilic aromatic substitution replaces a proton on benzene with another electrophile Substitution Reactions of Benzene and Its Derivatives

  3. 16.1 Bromination of Aromatic Rings • Benzene’s  electrons participate as a Lewis base in reactions with Lewis acids • The product is formed by loss of a proton, which is replaced by bromine • FeBr3 is added as a catalyst to polarize the bromine reagent

  4. Addition Intermediate in Bromination • The addition of bromine occurs in two steps • In the first step the  electrons act as a nucleophile toward Br2 (in a complex with FeBr3) • This forms a cationic addition intermediate from benzene and a bromine cation • The intermediate is not aromatic and therefore high in energy (see Figure 16.2)

  5. Formation of Product from Intermediate • The cationic addition intermediate transfers a proton to FeBr4- (from Br- and FeBr3) • This restores aromaticity (in contrast with addition in alkenes)

  6. Aromatic Chlorination and Iodination • Chlorine and iodine (but not fluorine, which is too reactive) can produce aromatic substitution with the addition of other reagents to promote the reaction • Chlorination requires FeCl3 • Iodine must be oxidized to form a more powerful I+ species (with Cu+ or peroxide)

  7. Aromatic Nitration • The combination of nitric acid and sulfuric acid produces NO2+ (nitronium ion) • The reaction with benzene produces nitrobenzene

  8. Aromatic Sulfonation • Substitution of H by SO3 (sulfonation) • Reaction with a mixture of sulfuric acid and SO3 • Reactive species is sulfur trioxide or its conjugate acid • Reaction occurs via Wheland intermediate and is reversible

  9. Alkali Fusion of Aromatic Sulfonic Acids • Sulfonic acids are useful as intermediates • Heating with NaOH at 300 ºC followed by neutralization with acid replaces the SO3H group with an OH • Example is the synthesis of p-cresol

  10. 16.3 Alkylation of Aromatic Rings: The Friedel–Crafts Reaction • Aromatic substitution of a R+ for H • Aluminum chloride promotes the formation of the carbocation • Wheland intermediate forms

  11. Limitations of the Friedel-Crafts Alkylation • Only alkyl halides can be used (F, Cl, I, Br) • Aryl halides and vinylic halides do not react (their carbocations are too hard to form) • Will not work with rings containing an amino group substituent or a strongly electron-withdrawing group

  12. Control Problems • Multiple alkylations can occur because the first alkylation is activating

  13. Carbocation Rearrangements During Alkylation • Similar to those that occur during electrophilic additions to alkenes • Can involve H or alkyl shifts

  14. How many the substituted benzenes below can be subjected to Friedel-Crafts alkylation? • Only one • Two of them • All of them • None of them

  15. 16.4 Acylation of Aromatic Rings • Reaction of an acid chloride (RCOCl) and an aromatic ring in the presence of AlCl3 introduces acyl group, COR • Benzene with acetyl chloride yields acetophenone

  16. Mechanism of Friedel-Crafts Acylation • Similar to alkylation • Reactive electrophile: resonance-stabilized acyl cation • An acyl cation does not rearrange

  17. 16.5 Substituent Effects in Aromatic Rings • Substituents can cause a compound to be (much) more or (much) less reactive than benzene • Substituents affect the orientation of the reaction – the positional relationship is controlled • ortho- and para-directing activators, ortho- and para-directing deactivators, and meta-directing deactivators

  18. Origins of Substituent Effects • An interplay of inductive effects and resonance effects • Inductive effect - withdrawal or donation of electrons through a s bond • Resonance effect - withdrawal or donation of electrons through a  bond due to the overlap of a p orbital on the substituent with a p orbital on the aromatic ring

  19. Inductive Effects • Controlled by electronegativity and the polarity of bonds in functional groups • Halogens, C=O, CN, and NO2withdraw electrons through s bond connected to ring • Alkyl groups donate electrons

  20. Resonance Effects – Electron Withdrawal • C=O, CN, NO2 substituents withdraw electrons from the aromatic ring by resonance •  electrons flow from the rings to the substituents

  21. Resonance Effects – Electron Donation • Halogen, OH, alkoxyl (OR), and amino substituents donate electrons •  electrons flow from the substituents to the ring • Effect is greatest at ortho and para

  22. 16.6 An Explanation of Substituent Effects • Activating groups donate electrons to the ring, stabilizing the Wheland intermediate (carbocation) • Deactivating groups withdraw electrons from the ring, destabilizing the Wheland intermediate

  23. Ortho- and Para-Directing Activators: Alkyl Groups • Alkyl groups activate: direct further substitution to positions ortho and para to themselves • Alkyl group is most effective in the ortho and para positions

  24. Ortho- and Para-Directing Activators: OH and NH2 • Alkoxyl, and amino groups have a strong, electron-donating resonance effect • Most pronounced at the ortho and para positions

  25. Ortho- and Para-Directing Deactivators: Halogens • Electron-withdrawing inductive effect outweighs weaker electron-donating resonance effect • Resonance effect is only at the ortho and para positions, stabilizing carbocation intermediate

  26. Meta-Directing Deactivators • Inductive and resonance effects reinforce each other • Ortho and para intermediates destabilized by deactivation from carbocation intermediate • Resonance cannot produce stabilization

  27. Summary Table: Effect of Substituents in Aromatic Substitution

  28. 16.7 Trisubstituted Benzenes: Additivity of Effects • If the directing effects of the two groups are the same, the result is additive

  29. Substituents with Opposite Effects • If the directing effects of two groups oppose each other, the more powerful activating group decides the principal outcome • Often gives mixtures of products

  30. Meta-Disubstituted Positions Are Unreactive • The reaction site is too hindered • To make aromatic rings with three adjacent substituents, it is best to start with an ortho-disubstituted compound

  31. Bromination of phenol with excess bromine yields tribromophenol. Which isomer? • 2,3,4-Tribromophenol • 2,4,5-Tribromophenol • 2,4,6-Tribromophenol

  32. 16.8 Nucleophilic Aromatic Substitution • Exactly the opposite electron demand as before! • While protons attached to electron-rich aromatics can be displaced by electrophiles, halogens attached to electron-depleted aromatics can be displaced by nucleophiles • Nucleophilic aromatic substitution is similar to SN1/SN2 in its outcome, but follows a completely different mechanism

  33. Addition-Elimination Reactions • Typical for aryl halides with nitro groups in ortho or para position • Addition to form intermediates (Meisenheimer complexes) by electron-withdrawal • Halide ion is then lost by elimination

  34. Chlorobenzene is unreactive under ordinary laboratory conditions…

  35. …but brute force will do the job! However, this can’t be the same mechanism

  36. Elimination-Addition: Benzynes • The reaction involves an elimination reaction that gives a triple bond, followed by rapid addition of water • The intermediate is called benzyne

  37. Evidence for Benzyne as an Intermediate • Bromobenzene with 14C only at C1 gives substitution product with label scrambled between C1 and C2 • Reaction proceeds through a symmetrical intermediate in which C1 and C2 are equivalent— must be benzyne

  38. Structure of Benzyne • Benzyne is a highly distorted alkyne • The triple bond uses sp2-hybridized carbons, not the usual sp • The triple bond has one  bond formed by p–p overlap and by weak sp2–sp2 overlap

  39. What type of reaction is this? • Nucleophilic substitution with benzyne intermediate • Diels-Alder cycloaddition • Friedel-Crafts alkylation

  40. 16.10 Oxidation of Aromatic Compounds • Alkyl side chains can be oxidized to CO2H by strong reagents such as KMnO4 and Na2Cr2O7 if they have a C-H next to the ring • Converts an alkylbenzene into a benzoic acid, ArR  ArCO2H

  41. Bromination of Alkylbenzene Side Chains • Reaction of an alkylbenzene with N-bromo-succinimide (NBS) and benzoyl peroxide (radical initiator) introduces Br into the side chain

  42. Mechanism of NBS (Radical) Reaction • Abstraction of a benzylic hydrogen atom generates an intermediate benzylic radical • Reacts with Br2 to yield product • Br· radical cycles back into reaction to carry chain • Br2 produced from reaction of HBr with NBS

  43. 16.11 Reduction of Aromatic Compounds • Aromatic rings are inert to catalytic hydrogenation under conditions that reduce alkene double bonds • Can selectively reduce an alkene double bond in the presence of an aromatic ring • Reduction of an aromatic ring requires more powerful reducing conditions (high pressure or rhodium catalysts)

  44. Reduction of Aryl Alkyl Ketones • Aromatic ring activates neighboring carbonyl group toward reduction • Ketone is converted into an alkylbenzene by catalytic hydrogenation over Pd catalyst

  45. Summary of reactions not involving aromatic substitution • Reduction of nitrobenzenes to anilines • Conversion of benzenesulfonic acids to phenols • Side chain oxidation of alkylbenzens to benzoic acids • Side chain halogenation of alkylbenzenes • Reduction of benzenes to cyclohexanes • Reduction of aryl ketones to alkyl benzenes