200 likes | 720 Vues
Geometric Constructions. Geometry Professional Development Series for Teachers University of Central Florida J. Andreasen; E. Selcuk Haciomeroglu; M. Capursi; Bhesh Mainali; Edward Knote; A. Zghayyar. What is GPS for Teachers?.
E N D
Geometric Constructions Geometry Professional Development Series for Teachers University of Central Florida J. Andreasen; E. Selcuk Haciomeroglu; M. Capursi; Bhesh Mainali; Edward Knote; A. Zghayyar
What is GPS for Teachers? • Funded under Florida Department of Education (FLDOE) Teacher Quality Grants • Collaborative partnership between UCF College of Education, College of Sciences, Orange County Public Schools (OCPS), and Florida Virtual School (FLVS) • Extensive professional development for High School Geometry teachers in OCPS
Goals of GPS for Teachers • Improve teacher content knowledge in geometry; • Increase student achievement in geometry; • Develop professional development program for sustained and focused support for geometry teachers; • Evaluate professional development
Structure of Professional Development • 40 High School Geometry teachers in each cohort • Two weeks of professional development in summer 2012 • Monthly follow-up professional development throughout school year with site visits • Final week of professional development in summer 2013
Professional Development • Focused on: • Implementing Next Generation Sunshine State Standards (NGSSS) and Common Core State Standards for Mathematics (CCSS-M) along with the Standards for Mathematical Practice (SMP) • Reasoning and sense making • Developing mathematical knowledge for teaching geometry
Constructions • Foster reasoning and sense making and the Standards for Mathematical Practice • Focus on explanations and justifications • Connect technology in meaningful ways • Represent constructions in multiple ways • Reach diverse learners
Connected to Standards • How does using Patty Paper foster different understandings than Compass and Straightedge or GeoGebra? • How do these three types of constructions connect to the SMP? • Where does differentiated instruction fit in? • How does this meet the needs of diverse student populations?
Patty Paper • Using Patty Paper, construct an equilateral triangle whose side length is the side of the patty paper
Compass and Straightedge • Using a compass and straightedge, construct an equilateral triangle with side length of segment AB.
GeoGebra • Customize toolbars and construct an equilateral triangle using GeoGebra. • www.geogebra.org
Connected to Standards • How does using Patty Paper foster different understandings than Compass and Straightedge or GeoGebra? • How do these three types of constructions connect to the SMP? • Where does differentiated instruction fit in? • How does this meet the needs of diverse student populations?
GeoGebra • GeoGebra is open source www.geogebra.org • GeoGebraWiki – Free Materials www.geogebra.org/wiki • GeoGebra User Forumwww.geogebra.org/forum
Contact Information • PI: • Janet Andreasen – Janet.Andreasen@ucf.edu • Co-PI’s • Erhan Haciomeroglu–Erhan.Haciomeroglu@ucf.edu • Maria Capursi – Maria.Capursi@ucf.edu • Website • http://education.ucf.edu/gps