boolean algebra n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Boolean Algebra PowerPoint Presentation
Download Presentation
Boolean Algebra

Loading in 2 Seconds...

play fullscreen
1 / 32

Boolean Algebra

11 Vues Download Presentation
Télécharger la présentation

Boolean Algebra

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Boolean Algebra NTU DSD (Digital System Design) 2007

  2. NOT Operation • The NOT operation (or inverse, or complement operation) replaces a Boolean value with its complement: • 0’ = 1 • 1’ = 0 • A’ is read as NOT A or Complement A • Boolean representationF(A) = A’ = A • Truth Table A A’ A A’ 0 1 1 0 Inverter symbol Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  3. AND Operation • The AND operation is a function of two variables (A, B) • Boolean function representation F(A,B) = A • B = A * B = AB • When both A and B are ‘1’, then F is ‘1’ 0 • 0 = 0 0 • 1 = 0 1 • 0 = 0 1 • 1 = 1 • Truth Table A B Y A Y 0 0 0 0 1 0 1 0 0 B 1 1 1 and symbol Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  4. OR Operation • The OR operation is a function of two variables (A, B) • Boolean function representationF(A,B) = A + B • When either A or B are ‘1’, then F is ‘1’ 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1 • Truth Table A B Y A Y 0 0 0 0 1 1 1 0 1 B 1 1 1 or symbol Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  5. XOR Operation • XOR gate is usual in logic circuits that do binary addition/subtraction. • Note that: • F = A  B = A’B + AB’ A B Y 0 0 0 0 1 1 1 0 1 1 1 0 Y=A  B A B Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  6. Boolean Functions • More complex Boolean functions can be created by combining basic operations A A’ F(A,B) = A’ + B B A B A’ F(A,B) = A’ + B 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  7. 7408 – Quad 2-Input AND Gate IC • 7432 – Quad 2-Input OR Gate IC Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  8. 7404 – Hex Inverter • 7486 – Quad 2-Input Exclusive-OR Gate IC Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  9. Laws and Theorems of Boolean Algebra • 單變數定理(Single Variables Theorem) • Identity • X + 0 = X • X * 1 = X • Null Element • X + 1 = 1 • X * 0 = 0 • Idempotent Theorem • X + X = X • X * X = X • Theorem of Complementarity • X + X’ = 1 • X * X’ = 0 • Involution Theorem • (X’)’ = X Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  10. Laws and Theorems of Boolean Algebra • 多變數定理(Multiple Variables Theorem) • Commutative law • X + Y = Y + X • XY = YX • Associative law • (X + Y) + Z = X + (Y + Z) = X + Y + Z • (XY)Z = X(YZ) = XYZ • Distributive law • X(Y + Z) = XY + XZ • X + (YZ) = (X + Y)(X + Z) • Simplification theorems • XY + XY’ = X (uniting) • X + XY = X (absorption) • (X + Y’)Y = XY • (X + Y)(X + Y’) = X • X(X + Y) = X • XY’ + Y = X + Y • Consensus theorem • XY + X’Z + YZ = XY + X’Z • (X + Y)(X’ + Z)(Y + Z) = (X + Y)(X’ + Z) Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  11. Proof of The Consensus Theorem • XY + X’Z + YZ = XY + X’Z • XY + X’Z + YZ = XY + X’Z + 1·YZ = XY + X’Z + (X + X’)YZ = XY + X’Z + XYZ + X’YZ = XY + XYZ + X’Z + X’YZ = XY(1 + Z) + X’Z(1 + Y) = XY·1 + X’Z·1 = XY + X’Z Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  12. Boolean Algebra and Truth Table • 利用真值表證明兩邊的式子 • 範例: • 證明 x•(y + z) = (x • y) + (x • z) • x(y + z) = xy + xz Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  13. Simplification / Minimization (簡化) • Simplification or Minimization tries to reduce the number of terms in a Boolean equation via use of basic theorems • A simpler equation will mean: • Less gates will be needed to implement the equation • Could possibly mean a faster gate-level implementation • Will use algebraic techniques at first for simplification • Graphical method called K-maps • Computer methods for simplification are widely used in industry Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  14. Minimization Example • Example: full adder's carry out function • Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin= (1) B Cin + A B' Cin + A B Cin' + A B Cin= B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin= B Cin + A (B' + B) Cin + A B Cin' + A B Cin= B Cin + A (1) Cin + A B Cin' + A B Cin= B Cin + A Cin + A B (Cin' + Cin)= B Cin + A Cin + A B (1)= B Cin + A Cin + A B Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  15. Computation in Digital Logic Circuit NTU DSD (Digital System Design) 2007

  16. Half Adder / Full Adder • S = A’B + AB’ • Cout = AB Full Adder Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  17. Full Adder with Truth Table • S = A’B’Cin + A’BCin’ + ABCin + AB’Cin’ = A’(B’Cin + BCin’) + A(B’Cin’ + BCin) = A’(B ⊕ C) + A(B ⊕ C)’ = A⊕(B⊕Cin) = (A⊕B)⊕Cin • Cout = A’BCin + AB’Cin + ABCin’ + ABCin = BCin + ACin + AB • F = A  B = A’B + AB’ Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  18. Circuit of Full Adder • S = A⊕B⊕Cin = (A⊕ Cin)⊕B • Cout = AB + BCin + ACin Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  19. Behavior Level of Full Adder in Verilog Code module full_adder (a, b, ci, s, co); input a, b, ci; output s, co; assign s = a ^ b ^ ci; assign co = (a & b) | (a & ci) | (b & ci); endmodule Gate Level of Full Adder in Verilog & VHDL Code LIBRARY ieee; USE ieee.std_logic_1164.ALL; ENTITY full_add IS PORT( a : IN STD_LOGIC; b : IN STD_LOGIC; c_in : IN STD_LOGIC; sum : OUT STD_LOGIC; c_out : OUT STD_LOGIC); END full_add; ARCHITECTURE behv OF full_add IS BEGIN sum <= a XOR b XOR c_in; c_out <= (a AND b) OR (c_in AND (a OR b)); END behv; module full_adder (a, b, ci, s, co); input a, b, ci; output s, co; wire NET1, NET2, NET3, NET4 ; xor ( NET1, a, b ); xor ( s , NET1, ci ); and ( NET2, a, b ); and ( NET3, a, ci ); and ( NET4, b, ci ); or ( co, NET2, NET3, NET4 ); endmodule Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  20. Verilog Code of 4-Bit Adder module full_adder (a, b, ci, s, co); input a, b, ci; output s, co; assign s = a ^ b ^ ci; assign co = (a & b) | (a & ci) | (b & ci); endmodule module f_fadder (a, b, s, co); input [3:0] a; input [3:0] b; output [3:0] s; output co; wire net1, net2, net3; full_adder f1(a[0],b[0],0,s[0],net1); full_adder f2(a[1],b[1],net1,s[1],net2); full_adder f3(a[2],b[2],net2,s[2],net3); full_adder f4(a[3],b[3],net3,s[3],co); endmodule Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  21. Answer of Quiz 1 1) Please complete this truth table 2019/12/21 Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/ 21

  22. Answer of Quiz 2 2) Please design an 8-bit adder by drawing block diagram, schematic and related Verilog code 2019/12/21 Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/ 22

  23. Answer of Quiz 2 module full_adder (a, b, ci, s, co); input a, b, ci; output s, co; assign s = a ^ b ^ ci; assign co = (a & b) | (a & ci) | (b & ci); endmodule module f_fadder (a, b, s, co); input [7:0] a; input [7:0] b; output [7:0] s; output co; wire net1, net2, net3, net4, net5, net6, net7; full_adder f1(a[0],b[0],0,s[0],net1); full_adder f2(a[1],b[1],net1,s[1],net2); full_adder f3(a[2],b[2],net2,s[2],net3); full_adder f4(a[3],b[3],net3,s[3],net4); full_adder f5(a[4],b[4],net4,s[4],net5); full_adder f6(a[5],b[5],net5,s[5],net6); full_adder f7(a[6],b[6],net6,s[6],net7); full_adder f8(a[7],b[7],net7,s[7],co); endmodule 2019/12/21 Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/ 23

  24. Basic Input / Output Device Input Devices NTU DSD (Digital System Design) 2007

  25. Logic Switch Circuit High Input Resistance Logic Levels 1 Open Closed Open 0 Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  26. Normally Open / Closed Pushbutton Press Release Press Release 1 1 Closed Open Closed Open Closed Open 0 0 Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  27. Example 4x4 Keypad Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  28. 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 Keyboard Scan Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  29. 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 Keyboard Scan Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  30. PS/2 Keyboard Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  31. Make Code & Break Code Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/

  32. Button Bounce Analog Waveform Digital Waveform Debounce Jackie Kan - 2007 (jackiekan@LinTon.1D24H.com/jackiekan@csie.ntu.edu.tw) http://linton.1d24h.com/~jackiekan/