1 / 18

Photoelectron Photoion Coincidence Spectroscopy: Trimethylphosphine

Photoelectron Photoion Coincidence Spectroscopy: Trimethylphosphine. Andr ás Bődi M álstofa í efnafr æð i Raunvísindastofnun Háskólans Reykjavík, 1 8/02/2005. Acknowledgements. Baer Group, University of North Carolina Tomas Baer, Jim Kercher

apruitt
Télécharger la présentation

Photoelectron Photoion Coincidence Spectroscopy: Trimethylphosphine

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Photoelectron Photoion Coincidence Spectroscopy:Trimethylphosphine András Bődi Málstofa í efnafræði Raunvísindastofnun Háskólans Reykjavík, 18/02/2005

  2. Acknowledgements • Baer Group, University of North Carolina • Tomas Baer, Jim Kercher • Photoelectron Spectroscopy Group,Eötvös University, Búdapest • Bálint Sztáray, Zsolt Gengeliczki, László Szepes http://www.chem.unc.edu/people/faculty/baert/tbgroup/PEPICO_Home_Page.htmlhttp://www.chem.elte.hu/departments/altkem/sztaray/

  3. Outline • Introduction to TPEPICO • Why detect photoelectron and photoions? • Why the coincidence? • Experimental setup • The measurement of P(CH3)3 • Data analysis and modeling • Ab initio calculations • Thermochemistry

  4. dissociation hn Dissociative Photoionization • Neutral thermal energy distribution • hn → photoionization • Dissociation • Consecutive and parallel recations • k, k1, k2 A+ + B AB+ A + B AB

  5. Photoelectrons and Photoions • Photoionization Mass Spectrometry • M + hν M+ + e– • Information: dissociation of the ion • Ultraviolet Photoelectron Spectroscopy • M + hν M+ + e– • Information: ionization energies (MO energies) • Photoelectron Photoion Coincidence Spectroscopy • M + hν M+ + e–

  6. Coincidence • Start signal – e– • Stop signal – ion Mass Spectrum at hn e– optics Ion optics

  7. Detection of zero kinetic E e– Conservation of momentum Detection of Zero Kinetic Energy Electrons • Threshold Photoelectron Photoion Coincidence • Energetics hn = IEad + Eintion + KEion + KEe

  8. Apparatus I Grating monochromator Sample inlet Reflectron e– optics Tunable hn source (H2 lamp) Sample chamber

  9. Apparatus II hn ion e–

  10. P(CH3)3 –Photodissociation Products ? CH3 loss CH4 loss H loss

  11. P(CH3)3 Data –TOF Distributions

  12. P(CH3)3 Data –Breakdown Curves

  13. Simulation Overview P(CH3)3 vibrational frequencies & rotational constants P(CH3)3 internal energy distribution P(CH3)3+ freq. & rot. const. IEad Ab initio input P(CH3)3+ internal energy distribution Transition state frequencies varied to acquire the best fit Ion optics parameters Bond energies RRKM + TOF calculation Tunneling params.

  14. Ab initio Input: Bond Energies

  15. (TSbe) (H2C)(H3C)P…H…CH3+ P(CH3)2+ + CH3 (TSab) (CH3)2P…H…CH2+ (c) HP(CH2)CH3+ + CH3 (d) P(CH2)(CH3)2+ + H (d) P(CH2)(CH3)2+ + H (e) P(CH2)CH3+ + CH4 P(CH3)3+ (b) HP(CH2)(CH3)2+ (a) Potential Energy Curves E

  16. ΔfH° P(CH2)(CH3)+ HP(CH2)(CH3)+ P(CH2)(CH3)2+ AE3 AE2 IE + AEn AE1 P(CH3)3+ IE P(CH3)3 Analogous Parent Gas Phase Thermochemistry

  17. Recapitulation • TPEPICO – Photoionization followed by the detection of photoions and zero kinetic energy photoelectrons in coincidence • Measurement – TOF spectra vs hn • Known ion internal energy – Kinetics model for photodissociation with ab initio input • Bond energies from kinetics model – Thermochemical cycles Heats of formation

  18. End Takk fyrir komuna.

More Related