700 likes | 934 Vues
1. Power and RMS Values. + −. Circuit in a box, two wires. + −. Circuit in a box, three wires. + −. Instantaneous power p(t) flowing into the box. Any wire can be the voltage reference.
E N D
+ − Circuit in a box, two wires + − Circuit in a box, three wires + − Instantaneous power p(t) flowing into the box Any wire can be the voltage reference Works for any circuit, as long as all N wires are accounted for. There must be (N – 1) voltage measurements, and (N – 1) current measurements.
Two-wire sinusoidal case zero average Power factor Average power
compare Root-mean squared value of a periodic waveform with period T Compare to the average power expression The average value of the squared voltage Apply v(t) to a resistor rms is based on a power concept, describing the equivalent voltage that will produce a given average power to a resistor
Root-mean squared value of a periodic waveform with period T For the sinusoidal case
Given single-phase v(t) and i(t) waveforms for a load • Determine their magnitudes and phase angles • Determine the average power • Determine the impedance of the load • Using a series RL or RC equivalent, determine the R and L or C
Determine voltage and current magnitudes and phase angles Using a cosine reference, Voltage cosine has peak = 100V, phase angle = -90º Current cosine has peak = 50A, phase angle = -135º Phasors
Thanks to Charles Steinmetz, Steady-State AC Problems are Greatly Simplified with Phasor Analysis (no differential equations are needed) Time Domain Frequency Domain Resistor voltage leads current Inductor current leads voltage Capacitor
Complex power S Projection of S on the imaginary axis Q P Projection of S on the real axis is the power factor Active and Reactive Power Form a Power Triangle
Consider a node, with voltage (to any reference), and three currents IA IB IC Question: Why is there conservation of P and Q in a circuit? Answer: Because of KCL, power cannot simply vanish but must be accounted for
Voltage and Currentin phase Q = 0 Voltage leads Current by 90° Q > 0 Current leads Voltage by 90° Q < 0 Voltage and Current Phasors for R’s, L’s, C’s Resistor Inductor Capacitor
Complex power S Projection of S on the imaginary axis Q P Projection of S on the real axis
Resistor also so Use rms V, I ,
Inductor also so Use rms V, I ,
Capacitor also so , Use rms V, I
Active and Reactive Power for R’s, L’s, C’s (a positive value is consumed, a negative value is produced) Active Power P Reactive Power Q Resistor Inductor Capacitor source of reactive power
Now, demonstrate Excel spreadsheet EE411_Voltage_Current_Power.xls to show the relationship between v(t), i(t), p(t), P, and Q
0.05 + j0.15 pu ohms PL + jQL PR + jQR /0 ° VR = 1.010 / - 1 0 ° VL = 1.020 IS IcapL IcapR j0.20 pu mhos j0.20 pu mhos A Transmission Line Example Calculate the P and Q flows (in per unit) for the loadflow situation shown below, and also check conservation of P and Q.
0.05 + j0.15 pu ohms PL + jQL PR + jQR /0 ° VR = 1.010 / - 1 0 ° VL = 1.020 IS IcapL IcapR j0.20 pu mhos j0.20 pu mhos
V 0 0 < D < 1 DT T RMS of some common periodic waveforms Duty cycle controller By inspection, this is the average value of the squared waveform
RMS of common periodic waveforms, cont. Sawtooth V 0 T
V 0 V 0 V 0 V 0 V 0 V 0 0 -V RMS of common periodic waveforms, cont. Using the power concept, it is easy to reason that the following waveforms would all produce the same average power to a resistor, and thus their rms values are identical and equal to the previous example
a b c n Three-phase, four wire system Reference Three Important Properties of Three-Phase Balanced Systems • Because they form a balanced set, the a-b-c currents sum to zero. Thus, there is no return current through the neutral or ground, which reduces wiring losses. • A N-wire system needs (N – 1) meters. A three-phase, four-wire system needs three meters. A three-phase, three-wire system needs only two meters. • The instantaneous power is constant
Observe Constant Three-Phase P and Q in Excel spreadsheet 1_Single_Phase_Three_Phase_Instantaneous_Power.xls
Imaginary V V = V – V cn ab an bn V = V – V ca cn an 30° Real V an 120° V bn V = bc V – V b n c n The p hasors are rotating counter - clockwise . 3 The magnitude of line - to - line voltage phasors is times the magnitude of line - to - neutral voltage phas ors.
Imaginary V V = V – V cn ab an bn V = V – V ca cn an I c I ca 30° I ab Real V I an a Line currents I , I , and I a b c I I bc b Delta currents I , I , and I ab bc ca I c c V bn I ca Balanced Sets Add to Zero in Both I bc Time and Phasor Domains I + I + I = 0 a b c I a b I b b a V + V + V = 0 an b n cn V = bc V – V – Vab + bn cn V + V + V = 0 ab bc ca I a 1 Conservation of power requires that the magnitudes of delta currents I , I , and I are ab ca bc 3 times the magnitude of line currents I , I , I . a b c
c c I c I c – V a n n + a a b b I – V + b ab I b – V + ab I a I a The Two Above Sources are Equivalent in Balanced Syst ems (i.e., same line currents I , I , I and phase - to - phase voltages V , V , V in both cases ) a b c ab bc ca
c KCL: I = I + I + I n a b c I c But for a balanced set, I + I + I = 0, so I = 0 Z a b c n I n n Z Z a b – V + ab I b I a Ground (i.e., V = 0) The Experiment: Opening and closing the switch has no effect because I is already zero for a three - phase n balanced set. Since no current flows, even if there is a resistance in the grounding path, we must conclude that V = 0 at the neutral point (or equivalent neutral point) of any balanced three phase load or source in a bala nced n system. This allows us to draw a “one - line” diagram (typically for phase a) and solve a single - phase problem. Solutions for phases b and c follow from the phase shifts that must exist.
3 Z l ine c c I c 3Z 3Z load load a a b b Z l ine I 3Z a load – V + ab Z l ine I b Balanced three - phase systems, no matter if they are delta connected, wye connected, or a mix, are easy to solve if you follow these steps : Z l ine 1. Convert the entire circuit to an equivalent wye with a a a I a ground ed neutral . 2. Draw the one - line diagram for phase a , recognizing that phase a has one third of the P and Q . 3. Solve th e one - line diagram for line - to - neutral voltages and + line currents . The “One - Line” Z load Van 4. If needed, compute l ine - to - neutral voltages and line currents Diagram – for phases b and c using the ±120° relationships. 5. If needed, compute l ine - to - line voltages and delta currents n using the and ± 30 ° relationships. n
Now Work a Three-Phase Motor Power Factor Correction Example • A three-phase, 460V motor draws 5kW with a power factor of 0.80 lagging. Assuming that phasor voltage Van has phase angle zero, • Find phasor currents Ia and Iab and (note – Iab is inside • the motor delta windings) • Find the three phase motor Q and S • How much capacitive kVAr (three-phase) should be connected in • parallel with the motor to improve the net power factor to 0.95? • Assuming no change in motor voltage magnitude, what will be the new phasor current Ia after the kVArs are added?
Part c. Draw a phasor diagram that shows line currents Ia, Ib, and Ic, and load currents Iab, Ibc, and Ica. Now Work a Delta-Wye Conversion Example
Φ jXs Rs Ideal Transformer jXm Rm 7200:240V Turns ratio 7200:240 (30 : 1) (but approx. same amount of copper in each winding) 7200V 240V Single-Phase Transformer
Isc + Vsc - Short circuit test: Short circuit the 240V-side, and raise the 7200V-side voltage to a few percent of 7200, until rated current flows. There is almost no core flux so the magnetizing terms are negligible. Φ Turns ratio 7200:240 (but approx. same amount of copper in each winding) Short Circuit Test jXs Rs Ideal Transformer jXm Rm 7200:240V 7200V 240V