1 / 35

Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

Spallation Neutron Source Project: Commissioning Results, First Operation Experience, and Upgrade Plans. Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA. Neutrons probe a broad range of length scales. Neutron scattering. Spallation-Evaporation Production of Neutrons.

bin
Télécharger la présentation

Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spallation Neutron Source Project: Commissioning Results, First Operation Experience, and Upgrade Plans Alexander Aleksandrov Oak Ridge National Laboratory Oak Ridge, USA

  2. Neutrons probe a broad range of length scales Neutron scattering A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  3. Spallation-Evaporation Production of Neutrons Fission • chain reaction • continuous flow • 1 neutron/fission Spallation • no chain reaction • pulsed operation • 30 neutrons/proton • Time resolved exp. A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  4. The Spallation Neutron Source • The SNS began operation in 2006 • At 1.4 MW it will be ~7x ISIS, the world’s leading pulsed spallation source • The peak neutron flux will be ~20-100x ILL • SNS will be the world’s leading facility for neutron scattering • It will be a short drive from HFIR, a reactor source with a flux comparable to the ILL A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  5. The Spallation Neutron Source Partnership SNS-ORNL Accelerator systems:~167 M$ ~20 M$ ~113 M$ ~106 M$ ~177 M$ ~60 M$ At peak : ~500 People worked on the construction of the SNS accelerator ~63 M$ Oak Ridge, TN 35° 49' N , 83° 59' W A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  6. Spring 1999 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  7. Spring 2000 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  8. Spring 2001 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  9. Spring 2002 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  10. Spring 2003 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  11. Spring 2006 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  12. SNS Accelerator Complex Current 1ms Front-End: Produce a 1-msec long, chopped, low-energy H- beam LINAC: Accelerate the beam to 1 GeV Accumulator Ring: Compress 1 msec long pulse to 700 nsec H- stripped to protons Deliver beam to Target 186 MeV 2.5 MeV 1000 MeV 86.8 MeV 387 MeV Ion Source CCL SRF, b=0.61 RFQ SRF, b=0.81 DTL Chopper system makes gaps 945 ns mini-pulse Current 1 ms macropulse A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  13. The SNS Target: 2-MW Design Pits on inner surface in this geometry • Cavitation-induced pitting is an issue. • Options for mitigation: • Materials, Geometry • 25 kJ/pulse at 7x15cm beam size sets of transverse and longitudinal shock wave. • Needs to be exchanged every 3 month 1 mm A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  14. 17 Instruments Now Formally Approved Chemistry to “Genomes to Life” Fundamental Physics to Engineering

  15. The SNS Main Parameters A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  16. Front End (injector) • 65 kV, 45 mA H- ion source • Electrostatic LEBT with pre-chopper • 2.5 MeV 402.5 MHZ RFQ • 3.6 m long MEBT with chopper and beam diagnostics A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  17. 402.5 MHzDrift Tube Linac (DTL) • DTL accelerates beam to 87 MeV • System includes 210 drift tubes in six separate tanks (37m total length) • Inside drift tubes: permanent magnet quadrupoles, electromagnetic dipole correctors, strip-line beam position monitors (BPM) A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  18. Drift Tube Linac in the tunnel A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  19. 805 MHz Coupled-Cavity Linac (side coupled) Bridge Coupler 44 final machining • CCL accelerates beam to 187 MeV • System consists of 48 accelerating segments, 48 quadrupoles, 32 steering magnets and diagnostics (55 m total length) A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  20. Coupled-Cavity Linac in the tunnel A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  21. 805MHz Super Conducting RF Linac (SCL) • SCL accelerates beam from 187 to 1000 MeV • 81 6-cell superconducting cavities in 23 cryo-modules (157m) • Cavities are operated at 2.1K or 4.2K • Two cavities geometries are used to cover broad range in particle velocities Cavities are assembled into strings Medium beta cavity High beta cavity A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  22. Superconducting Cavity Performance Nr of Cavities Nr of Cavities A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  23. Super Conducting Linac in the Tunnel A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  24. High-Power RF Systems • Compact High Voltage Converter Modulators using solid state devices (IGBT) • High-Power RF System: klystrons, waveguides, circulators • 7 402.5 MHz 2.5 MW klystrons • 4 CCL 5 MW Klystrons • 81 SCL 550 kW klystrons A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  25. Digital Low Level RF system Cavity field and phase droop with feedback alone (left) and feedback + feedforward (right) beam loading compensation. Phase width of the bunch along the pulse with feedback alone (left) and feedback + feedforward (right) A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  26. SNS Central Helium Liquefying Facility • Cold box specifications are: • 8300 Watts on the shield • 2400 Watts @ 2.1Kelvin • 15g/s Liquefaction A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  27. The SNS Accumulator Ring Circumference 248 m Energy 1 GeV Revolution period 1 μs Number of turns 1060 Final Intensity 1.5x1014 Peak Current 52 A Number of magnets >300 (bend and focusing) A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  28. Ring Installation Progress A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  29. SNS Liquid Mercury Target A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  30. SNS Remote Handling Manipulators A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  31. Commissioning Timeline 2003 2002 2004 2006 2005 Front-End DTL/CCL SCL DTL Tank 1 Ring DTL Tanks 1-3 Target A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  32. 5x1013/pulse Protons Delivered to the Target Ring Beam Current Monitor Beam on Target View Screen Final RTBT Beam Current Monitor A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  33. 1st “Production Run” A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  34. Transition to Operation FY07 FY08 FY09 A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

  35. The SNS Power Upgrade Main Parameters A. Aleksandrov RuPAC 2006 Sept. 10 – 14, 2006 Novosibirsk

More Related