1 / 21

Exploring New Physics with Belle II: A Comprehensive Overview of Methods and Processes

This paper provides an in-depth examination of how the Belle II experiment can offer crucial insights into new physics phenomena, complementing other experiments. It covers various processes such as (semi)inclusive B meson decays and neutrals, showcasing the experiment's potential impact on flavor physics. Detailed physics programs and methodologies are discussed, highlighting the experiment's significance in the context of the B Factories. The document also references key papers exploring Belle II's contributions to flavor physics studies.

blevinst
Télécharger la présentation

Exploring New Physics with Belle II: A Comprehensive Overview of Methods and Processes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CPV & LFV/LFU @ Belle II BoštjanGolob University of Ljubljana/Jožef StefanInstitute & Belle/Belle II Collaboration Introduction (Examples of...) LFU LFV CPV Summary University of Ljubljana “Jožef Stefan” Institute Heavy Flavor 2016 Quo Vadis?

  2. Introduction “SuperKEKB”Accelerator e- (HER): 7.0 GeV e+ (LER): 4.0GeV ECMS=M(U(4S))c2 dNf/dt =s(e+e-→f) L L =8x1035 cm-2 s-1 B → fKs Lumi ratio for same sensitivity B → J/yKs B → tn Belle 2 Belle Ee+beam 5 ab-1 20 ab-1 Phase 1: w/o QCS, Belle 2 Phase 2: w/ QCS, Belle 2 (no VXD) Phase 3: full Belle 2 2016 2017 2018 2019 2020 2021 Phase 3 Phase 1 Phase 2 QCS, Belle 2 VXD 35 ab-1 50 ab-1 2022 2023 2024 2025 2026 2027 2028

  3. Subjects Methods and processes where Belle 2 can provide important insight into NP complementary to other experiments: Emiss: B(B→tn), B(B → Xctn), B(B → hnn),... (Semi)Inclusive: B(B → sg), ACP(B → sg), B(B → sll ), ... Neutrals: S(B → KSp0g), S(B → h’ KS), S(B → KSKSKS), B(t→ mg), B(Bs→ gg), ... Detailed description of physics program at Belle 2 in: The Physics of the B Factories B.G.,, K, Trabelsi, P. Urquijo, BE LLE2-NOTE- PH-2015-002 A.G. Akeroyd et al., arXiv: 1002.5012 Impact of Belle II on Flavor Physics P. Urquijo, BE LLE2-NOTE- PH-2015-002 Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Eur. Phys. J. C74 (2014) 3026 Belle I I - LHCb measurement extrapolation comparisons B. O’Leary et al., arXiv: 1008.1541

  4. LFU/Missing energy Btn, hnn, Xctn,... possible to reconstruct events with n‘s; fully (partially) reconstruct Btag; reconstruct h± from Bsig; no additional energy in EM calorim.; signal at EECL~0; Partial reconstruction (semileptonic tagging): etag~1% Missing E (n) Btag Bsig Bsig → tn candidate event D*± Bsig l Btag n

  5. LFU/Missing energy B D*tn R(D(*)) R(D)SM=0.300 ±0.008 R(D*)SM =0.252 ±0.003 use NN with M2miss, Evis, cosqB-D* lsig. data sample with low M2miss used to fit the background contribution l=e,m Belle, arXiv:1603.06711, 700fb-1 H. Na et al., Phys.Rev.D 92, 054410 (2015) S.Fajfer et al., Phys.Rev.D85(2012) 094025 NN output for data with M2miss > 0.85 GeV2 signal is to the right →

  6. LFU/Missing energy B D*tn R(D*)=0.302±0.030±0.011 Belle, arXiv:1603.06711, 700fb-1 s(R(D*))/R(D(*))[%] HFAG, http://www.slac.stanford.edu/xorg/hfag/ 4s discrepancy with SM 3.5 s from SM @ 5 ab-1 5 sfrom SM @ 20 ab-1 L[ab-1]

  7. LFU/Missing energy Dsln inclusive D meson reconstr. cc→ Dtag Ds* (→ Dsg) Kfrag Xfrag Mmiss(Dtag gKfragXfrag) = MDs Ds→mn Mmiss(Dtag gKfragXfrag m) = Mn inclusive reconstruction of Ds Belle, JHEP09, 139 (2013), 900fb-1 reconstruction of Dsmn

  8. LFU/Missing energy Dsln Ds→tn EECL Belle, JHEP09, 139 (2013), 900fb-1

  9. LFU/Missing energy s(X)/X[%] Dsln B.G.,, K, Trabelsi, P. Urquijo, BE LLE2-NOTE- PH-2015-002 RDst/m Br(Ds→mn) Br(Ds→tn) RDst/m= Br(Ds→tn) / Br(Ds→mn) RDst/m=10.73 ± 0.69 ± 0.55 (RDst/m)SM= 9.762 ± 0.031 Belle, JHEP09, 139 (2013), 900fb-1 L[ab-1] n.b.: s(R(D*))/R(D(*)) ~4% @20 ab-1

  10. LFU/B →K*l l B K*l l angular analysis BK*mm BK*ee Nsig=118±12 Nsig=69±12 Belle, arXiv:1604.04042, 700fb-1 P5‘ LHCb, JHEP 1308 (2013) 131

  11. LFU/B →K*l l B K*l l R(K*)= N(BK*ee) N(BK*mm) approximate stat. uncertainty on R(K*) Belle, arXiv:1604.04042, 700fb-1 L[ab-1] 0.7 5.0 20.0

  12. LFV/t → m g e g t → m g g m m t t Belle, PLB66, 16 (2008), 535 fb-1 e e e e kinematic variables for signal isolation: DE=ECM(mg)-ECM(beam) Minv=m(mg) main background from ee→ t(mnn) t(pn)gISR BrUL 1/ √L t t p p n n signal n n expected sig. B5x10-7 background e

  13. LFV/t → m g simplified (1D) toy MC UL90% B(t → m g) [10-8] 4 2 1 0.4 0.2 t → m g  1/L Belle, PLB66, 16 (2008), 535 fb-1 B(t→ m g) < 4.4 ·10-8 decays t→ 3l, l h0background free  1/√L 0.2 1 10 L[ab-1] B.G.,, K, Trabelsi, P. Urquijo, BE LLE2-NOTE- PH-2015-002

  14. CPV/B→ sqq b → sqq t-dependent CPV - some uncertainties cancel in DS (vtx reconstr., flavor tag, likelihood fit) ; - better KS eff. with vtx hits - larger vtx radius, 30%); - vtxreconstr. improved with better tracking; 41 new phases in MSSM DS=sin2f1eff -sin2f1 s(sin2f1(J/yKs)) s(s) 3Ks 0.007 fKs P. Urquijo, Belle2-note-ph-2015-004 0.045 h‘Ks s(sin2f1(fKs)) 0.020 J/yKs 0.02 B. Golob, K. Trabelsi, P. Urquijo, Belle2-note-ph-2015-002

  15. CPV/B→ sg t-dependent decays rate of B → fCP; S and A: CP violating parameters B → K* (→KSp0)g t-dependent CPV SM: SCPK*g -(2ms/mb)sin2f1  -0.04 Left-Right Symmetric Models: SCPK*g 0.67 cos2f1  0.5 SCP(Ksp0g) = -0.10 ±0.31 ±0.07 ACP(Ksp0g) = -0.20 ±0.20 ±0.06 for m(Ksp0) < 1.8 GeV (mainly K*g) D. Atwood et al., PRL79, 185 (1997) B. Grinstein et al., PRD71, 011504 (2005) Belle, PRD74, 111104 (2006), 500 ab-1

  16. CPV/B→ sg B → K* (→KSp0)g t-dependent CPV SCPKsp0g= -0.15 ±0.20 ACPKsp0g= -0.07 ±0.12 HFAG Summer 2012 HFAG, Summer’12 5 ab-1 s(SCPKsp0g)= 0.11 @ 5 ab-1 0.04 @ 50 ab-1 (~SM prediction) 50 ab-1 B.G.,, K, Trabelsi, P. Urquijo, BE LLE2-NOTE- PH-2015-002 for B→r0g ~2x larger uncertainty

  17. DCPV/B→ sg B → s(+d)g direct CPV Semi-inclusive, sum of many exclusive states:all flavor specific final states; <D>: average dilution due to flavour mistag, 1 DD: difference between flavour mistag for b and b, << 1 Adet: detector induced asymmetry BaBar, PRL101, 171804(2008),350 fb-1 b → sg b → sg Adet: careful study of K/pasymmetries in (p,qlab) using D decays or inclusive tracks from fragmentation; lots of work on system.,  few 10-3exp. sensitivity

  18. DCPV/B→ sg B → sg direct CPV Inclusive, g recontruction only; bkg. suppression (kinematic event shape variables); semileptonic tagging; Similar sensitivity expected for semi-inclusive & fully inclusive Belle, PRL114, 151601 (2015), 700 fb-1 HFAG, 2014(?) SM: ACP ~ (0.0044±0.00240.0014)% T. Hurth et al., Nucl.Phys. B704, 56 (2005) sum of excl. incl. 5x10-3

  19. Summary LFU: important measurements to be performed already with 5 – 10 ab-1 (2019-2020) LFV: 50 ab-1 (2023) needed to reduce existing limits by > 10 CPV: in rare modes 20-50 ab-1 (2021-2023) needed to reach SM expectations

  20. Summary

  21. Summary

More Related