1 / 54

Highlight on New Views on the Universe

Vemes Recontres du Hanoy 11/04/08 Vietnam. Highlight on New Views on the Universe. The Big Bang. We live in a Homogeneous & Isotropic Universe described by (a Robertson-Walker metric & Friedmann’s equation derived from) Einstein’s General Relativity.

boyd
Télécharger la présentation

Highlight on New Views on the Universe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Vemes Recontres du Hanoy 11/04/08 Vietnam Highlighton New Views on theUniverse

  2. The Big Bang We live in a Homogeneous & Isotropic Universe described by (a Robertson-Walker metric & Friedmann’s equation derived from) Einstein’s General Relativity. It began 13.7 billion years ago, and is composed of... Celebrate Einstein Centennial!

  3. Cosmological Context« Precision Cosmology Era » • CMB flattness • SNIa (+CMB) acceleration => « Concordance Model » -CDM • Clusters evolution is a direct, global and independant test of the matter content of the Universe

  4. Cosmology General Relativity AE (F)

  5. launched 1989

  6. WMAP Precision Cosmology

  7. The New SN Ia Hubble Diagram The New SN Ia Hubble Diagram [Dashed line: best fit, assuming Wtotal = 1] 97ff 97ff (mag) (6 of the 7 highest-redshift SNe Ia) (6 of the 7 highest- redshift SNe Ia)  log dL (Riess et al. 2004, ApJ, 607, 665) (Riess et al. 2004, ApJ, in press)

  8. Residual Hubble diagram (Riess et al. 2004, ApJ, 607, 665)   (log dL) Redshift (z)

  9. Riess et al. (2004), using all published high-z SN Ia data. (SN Ia + LSS: WM = 0.28, WL = 0.72, with precision ~ CMB + LSS) WM=1 ruled out at very many !

  10. SnIa WMAP (h fix) LSS 2dF

  11. Primordial Nucleosynthesisin the New Cosmology

  12. b Big Bang Nucleosynthesis Theory vs. Observations: Remarkable agreement over 10 orders of magnitude in abundance variation Concordance region: b h2 = 0.02 For h=0.7, b = 0.04. Deuterium: strongest constraint 4He

  13. Standard BBN K. Ichiki, M. Yahiro, T. Kajino, M. Orito, G. J. Mathews PRD (2002), astro-ph/0203352 WMAP Dark Radiation relaxes the tension between the CMB and 4He limits on the baryon/photon ratio

  14. Official detections by H.E.S.S. • Crab Nebula (2003, 3 Tel.) - 54 sigma • PKS 2155 (2003, 2 Tel.) - 45 sigma • Mrk 421 (2004, 4 Tel.) - 71 sigma • PSR B1259 (2004, 4 Tel.) - 8 sigma • RX J1713 (2003, 2 Tel.) - 20 sigma • Sagittarius A* (2003. 2 Tel.) - 11 sigma Linton, WatsonFest, Leeds July 2004

  15. High-Resolution Simulations of Cold Dark Matter (CDM) Halos

  16. Low density Universe -CDM Basic Idea: Cluster evolution strongly depends on m (and 8, ) Z=3 Z=1 Dense flat Universe Virgo Consortium

  17. =0.3, 8~[.75,1], =0.2 =[0.8,1.] , 8~.55, =0.12 L-T Dispersion M-T Dispersion RDCS: 50 deg² fx3. 10-14 erg/s/cm² MACS: 22 000 deg² fx  10-12erg/s/cm²

  18. Ultra-high energy cosmic ray propagation in the Universe Martin Lemoine Institut d’Astrophysique de Paris UHECR mystery : origin ?? … nature ?? … energy spectrum ?? What source can accelerate particles to 1020 eV ? Why do we see (do we?) particles with energy 1020 eV ? Why do we not see the source in the arrival directions of UHECRs ? Propagation effects may be the key to the mystery : 1. Energy losses: GZK cut-off or not ? 2. Effects of magnetic fields

  19. ? most interesting for general astrophysics non thermal! 32 orders of magnitude Is there an end? propagation acceleration 12 orders of magnitude The 9th wonder of the world one-century quest!

  20. All particle cosmic ray spectrum (artist’s view !) UHECR: composition ?? spectrum ?? broken tibia: transition to UHECR ? C,O,… He Fe knee p ankle: pair production dip Nagano & Watson 00

  21. Pierre Auger Project 3000 km2 - 1600 water tank array

  22. a Source Imaging Air Cherenkov Telescopes The night The night The ground Image of source is somewere along image of shower axis ... Use more views to locate source!

  23. M. Beilicke (Gamma 2004) PSR B1259-63 : H.E.S.S. Observations Pre-periastron: • 26.2. - 2.3.2004 • 3 telescopes only • Zenith angle: 42deg • Threshold: 360 GeV • Livetime: 7.8h Post-periastron: • 19.3. - 29.3.2004 • Zenith angle: 44deg • Threshold: 380 GeV • Livetime: 17.4h Significance: 9.1 σ 6.3 σ Still under analysis: • April, May 2004 • Livetime: 14h

  24. Galactic centre

  25. News on GRB

  26. GRB: where are they? The great debate (1995) Fluence:10-7 erg cm-2 s-1 Distance: 1 Gpc Energy:1051 erg Distance: 100 kpc Energy: 1043 erg Need a new type of observation! Cosmological - Galactic?

  27. BeppoSAX and the Afterglows • Good Angular resolution (< arcmin) • Observation of the X-Afterglow Costa et al. (1997) • Optical Afterglow (HST, Keck) • Direct observation of the host galaxies • Distance determination Kippen et al. (1998) Djorgoski et al. (2000)

  28. GRB 030329 & SN 2003dh 6 articles in Nature ! Z = 0.17 EGRB = 2 1052 erg Matheson et al. 2003

  29. Afterglow Observations Harrison et al (1999) Achromatic Break Woosley (2001)

  30. Jet and Energy Requirements Bloom et al. (2003)

  31. Berger et al. 2003 Lamb et al. 2004 Unifying relations ?

  32. GRB for Cosmology Amati et al. (2002) Ghirlanda et al. (2004)

  33. Cosmology with GRB GRB 000131 z = 4.5 Andersen et al. (2000)

  34. GRB for Cosmology Dai, Liang & Xu (2004)

  35. GRB for Cosmology Luminosity distance Preliminary Redshift

  36. Now Galaxy formation? Reionisation(s)(first stars ?) Recombination Big BangInflation Observable universe with present day telescopes Universe not yet directly observed « Dark ages » CMB BBN Cosmic history  0 ~ 3-7 ? ~ 10-30 1000 Redshift Age ~ 1-2 Gyr ~ 250 Myr ~ 500 000 yr 0 13,7 Gyr

  37. NeutrinoDetectors

  38. Amanda technology 80 strings / 60 OM’s each 17 m OM spacing 125 m between strings 1 km2hexagonal pattern Surface array: 2 OMs each string top calibrate angular response 100 tagged TeV  /day installation, operation 2005-2010

  39. acoustic receiver 3 optical modules 12m local control module LED beacon master local control module acoustic receiver string control module and string power module acoustic beacon 100m acousticreleases interlink cable with wet-mateable connector Antares preproduction prototype (2002-3)...redeploy in October

  40. Search forDark Matter

  41. Ge Ge, Si Ionization Liquid Xe Heat Al2O3, LiF Light CaWO4, BGO NaI, Xe Direct detection techniques WIMP Elastic nuclear scattering ≈ 20 % energy • ≈ 100% detected energy• relatively slow• requires cryogenic detectors • ≈ few % detected energy• usually fast• no surface effects ?

  42. A first WIMP candidate: DAMA • Data taking completed in July 2002 • Total exposure of 107,731 kg.d • See annual modulation at 6.3s • Claim model-independent evidence for WIMPs in the galactic halo • WIMP candidate under standard halo parameters:Mc = (52 +10) GeV and sc-N = (7.2 +0.4) .10-6 pb • Rather opaque analysis (raw spectrum, cuts, calibration) • Nevertheless, checking this result remains important • 2nd phase 250 kg LIBRA running... -8 -0.9

  43. Direct detection summary • Background discrimination is now essential • Sensitivity of CDMS, EDELWEISS and CRESST one order of magnitude better than present competitors • Optimistic SUSY models are now tested

  44. Experimental status and theoretical predictions CDMS, CRESSTEDELWEISS-I present CDMS-II, CRESST-II, EDELWEISS-II,XENON, XMASS … sensitivity goals 1 Ton sensitivity goal (optimistic) L. Rozkowski et al., hep-ph/0208069

  45. GravitationalWaves

  46. PSR 1913+16: the prototype gw source Chirp Waveform Prototype NS -NS: binary radio pulsarPSR B1913+16 orbital decay GW emission causes orbital shrinkage leading to higher GW frequency and amplitude PSR B1913+16 Weisberg & Taylor 03

  47. NAUTILUS • na= 935 Hz • new antenna suspension cable • new capacitive transducer • Quantum Design dc SQUID

  48. Present SphericalDetectors Properties Mass 1150 kg CuAl alloy, 65cm diameter Sound velocity v = 4000 m/s Resonant freq. f = 3160 Hz Rapid cool down to mK temperatures.

  49. TAMA

More Related