1 / 48

The Gemini Deep Deep Survey First Results Karl Glazebrook Johns Hopkins University

The Gemini Deep Deep Survey First Results Karl Glazebrook Johns Hopkins University.

brita
Télécharger la présentation

The Gemini Deep Deep Survey First Results Karl Glazebrook Johns Hopkins University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Gemini Deep Deep Survey First Results Karl Glazebrook Johns Hopkins University GDDS Team: Karl Glazebrook (JHU), Bob Abraham (Toronto), Pat McCarthy (OCIW), Rick Murowinski (DAO), Ray Carlberg (Toronto), Ron Marzke SDSU), Sandra Savaglio (JHU), H-W Chen (OCIW), David Crampton (DAO), Isobel Hook (Oxford), Inger Jørgensen & Kathy Roth (Gemini)

  2. This talk • Current galaxy populations z<1 & z>2 • Evolution to z=1 of classical E/Sp • Lyman Break Galaxies (LBGs) at z>2 • The ‘redshift desert’ 1<z<2 • Why is it there? • What can we do about it? • Technical solution: ‘nod & shuffle’ • The Gemini Deep Deep Survey • Selection • Observations • Results

  3. The redshift desert n(z) Caltech FGRSCFRS R<24 LBGsR<25 Redshift What are these populations? ALL MAGSARE AB!`

  4. z<1 galaxies: SFR-z Measurements: Luminositydensities: Radio FIR Ha, Hb [OII] UV cuum (~2800Å) (1+z)3 (1+z)2 Slope allowed by local population synthesis‘cosmic spectrum’ 2dFGRS: Baldry et al. SDSS: Glazebrook et al. Orig. (1+z)4(Lilly et al. 1996)

  5. z<1 galaxies: morphology

  6. z<1 galaxies: morphological evolution z morphology Brinchmann et al. (1998,2000)

  7. z<1 galaxies: morphological evolution Brinchmann et al. 1998

  8. z<1 galaxies: morphological evolution ‘Stellar’Mass Massive galaxies in place at z=1Possible CDM contradictionWhat about z>1 ? Brinchmann et al. 2000

  9. z>2 galaxies: selection Populationappears R>23.5 Steidel et al.

  10. z>2 galaxies: morphology Opt. NIR Opt. NIR Irregular morphology (Dickinson et al.)When does Hubble Sequence form?

  11. z>2 galaxies: SFR-z • Data from low to high redshift: Lilly et al., Connoly et al., Madau et al., Steidel et al. • 1<z<2 filled in by photometric z’s • Dust corrections in z>2 Steidel et al. samples estimated from Hb/UV in a few galaxies. • Decline probably isn’t real. photo-z’s Steidel (1999)

  12. z>2 galaxies: masses Papovich, Dickinson, Ferguson (2001) K data at z=3 probes rest frame V - not ideal Optical + NIR photometry: best fit masses 109-1011M c.f. modern galaxies: 109-1012M ~ 10-20% of todays mass observed at z>2 ?

  13. Mass assembly SFR  Mass SFR  (1+z)3 z<1  (1+z)-1 z>1 = 0 z>5 17% SFR  (1+z)3 z<1 = const. 1 z>1 = 0 z>5 photo-z’s 27% Steidel (1999)

  14. The redshift desert Epoch of Mass assembly of galaxies? Formation of Hubble Sequence? n(z) Caltech FRSCFRSR<24 LBGsR<25 Redshift Cause ?

  15. Colors of current faint samples E/S0 Sbc SFR=const. Caltech FRS LBGs

  16. z=1.5 z=1 z=3 z=0 Why I: selection effect of redshift Galaxies especially elliptical galaxiesat z=1.5 are very faint! Very very hard to get good signal/noise spectra  detect weak absn lines  measure redshift Young stellar pop Old stellar pop

  17. z=0.5 z=1.5 z=1 Why II: sky background • Sky background is BRIGHT • NOISY Line emissionVARIES on 100s timescalesObjects are 100 fainterthan skySubtraction is very very hard Gemini Observatory Sky Spectrum 3500 4500 5500 6500 7500 8500 9500 10500 11500 Wavelength / Angstroms Optical + near-IR

  18. z~4 LBGs Steidel et al 1999I=24-25

  19. z=1.5 radio galaxies Model 53W091 R=24.8 I=23.5Keck/LRIS 20ksec ~3L* E. galaxy +53W069 Observed wavelength / Angstroms

  20. Simulated z=1.5 sub-L* elliptical Input Spectrum 53W069, + Poisson noise. 2800Å HK Simulated I=25 z=1.5early-type spectrum Exposure 100 ksecs(Gemini/GMOS) + 1% sky-subtraction error

  21. Technical solution: ‘nod & shuffle’ • Rapid nod of galaxy along slit (~60s) to give A/B images • Store B image adjacent to A, using CCD charge-shuffling - no readnoise penalty • History: • J.C. Cuillandre et al. 1994 ‘va et vient’ (NTT trials) • Sembach & Tonry 1996 (Dartmouth 2.4m) • Glazebrook & Bland-Hawthorn 1998 (AAT): • MOS mode (200 m-plex in HDF-S to R=23.4 • Demonstrate 10-4dsky/sky • 2001: Implemented on Gemini/GMOS

  22. A B A-B Sky cancellation: ‘nod and shuffle’ Storage of ‘sky’ image next to object image via ‘charge shuffling’Zero extra noise introduced, rapid switching (60s) Typically A=60s/15 cy: 1800s exposure10-3 subtraction

  23. Another example

  24. Gemini Deep Deep Survey GDDS Team: Karl Glazebrook (JHU), Bob Abraham (Toronto), Pat McCarthy (OCIW),Rick Murowinski (DAO), Ray Carlberg (Toronto), Ron Marzke (SDSU), Sandra Savaglio (JHU), H-W Chen (OCIW) David Crampton (DAO), Isobel Hook (Oxford), Inger Jørgensen & Kathy Roth (Gemini) Goal: Deep 100,000 sec MOS exposures on Las Campanas IR Survey fields to get redshifts of a complete K<22.4 I<25 sample covering 1<z<2

  25. Goals: • First Complete sample 1<z<2 • use photo-z’s to weed out low-z galaxies (BVRIzJHK) • Determine luminosity and mass functions • Can we see the assembly of mass? • Massive galaxies at z=2 would severely trouble CDM • Mass(z) more robust than SFR(z) • Relate to galaxy morphology (ACS) • Identify Ell/Sp/Irr over 1<z<2 • Track low-z behavior to high-z • E.g. can we see mass assembly of giant Ellipticals? • Can we track the dynamical evolution of spiral disks • Track SFH over 1<z<2: • Age of galaxies, metallicities of population

  26. GDDS history • Sep 2001: start of GDDS evil planning • Jan 2002: team approached Gemini observatory with nod & shuffle proposal • Feb 2002, obtained Gemini go-ahead. • Feb-May 2002. Implementation of N&S at DAO (~$10K cost) • May 2002: first N&S engineering observations on 8m • July 2002: N&S commissioned on sky • Aug 2002: First 4 nights of GDDS - Science Verification for N&S - success!! • Sep-Dec 2002: Band I queue time, 50 hrs

  27. Gemini + GMOS Gemini GMOS spectrograph Tel.+instr. efficiency GMOSLRISLDSS1 GMOS represents the best possible option for a red sensitive MOS. Ideal system for nod & shuffle

  28. Sky residuals SUMMED along long slit (1.8 arcmin) Cycle:A=60sB=60s + 25s o/head Raw Sky/20 Subtracted sky (i.e. ~10-3 level is enough for 200,000 sec pointed obs.)

  29. GDDS sample LCIRS4 fields BVRIzJHKs2626Limits:B<26.0 V<26.5R<26.8 I<25.8z<24.7 J<22.5H<22.5Ks<22.4 Use photo-z’s to weed out z<0.7 foreground I<25 typical model n(z):

  30. GDDS sample LCIRS K<20.3 sample + photo-z’s Red galaxies at high-z exist! Burstt=1t=2const. CNOC M* evol.

  31. GDDS mask 84 objects - 2 tiers with150 l/mm grating

  32. GDDS Spectra 77 objects 40,000 secs

  33. Example object: raw object+sky OH forest I=23.8

  34. Example object: N&S subtracted I=23.8 z=1.07 [OII] 3727at 7700Å

  35. GDDS: Oct 2002 snapshot • GDDS SV Aug 2002 + Band I Queue time (Sep/Oct 2002) Up to 100 ksec on first field (SA22) First 40 ksec now reduced and very preliminary redshifts • TO COME 2002-2003 (total time awarded 50 hrs in Band I): Complete 3 GDDS fields, secure 100 z>1 redshifts

  36. GDDS: ultra-super-preliminary results These are just the‘easy’ ones so far!~ 40 ksec Working on CCF Data on this field is still coming in. Full 100,000 secswill pound on z=1.5old red galaxies

  37. High Redshift Elliptical Galaxies? 53W091 at z=1.393V-I=2.2 I-K=2.94 Model: 4 Gyr old stellar populationat z=1.4, age of Universe = 4.5Gyrz(form) ≈10 Obj # 398 from GDDS SA22V-I=1.7 I-K=2.7 MgII fl FeII Rest-frame UV absorption line redshifts! Wavelength / Angstroms

  38. Accuracy of photo-z’s • First GDDS SA22field • Note: B data N/A for this one!! • Large scatter Not too bad z<0.7

  39. Colors of GDDS galaxies GDDS z=1.4 E/S0 template z=1.4 Sbc template HDF LBGs (Papovich et al. 2001)

  40. Color-z of GDDS galaxies E/S0 template At least halfway across the desert!! Again just the easy ones… Sbc template SFR=const. template

  41. GDDS: observed evolution? Ultra-super-duperpreliminary Large pinchof salt

  42. Determing IR luminosities: K correction Almost independent of spectral type for z<1.5, robust correction Old starburst SEDs

  43. IR luminosities of GDDS galaxies GDDS galaxies K<17.9 local sample(Glazebrook et al. 2003) M* z=0.1

  44. IR luminosities II GDDS galaxies z>1 K<17.9 local z<0.5 sample(Glazebrook et al. 2003) M* z=0.1 MK

  45. K<17.9 local z<0.5 sample(Glazebrook et al. 2003) K<17.9 local z<0.5 sample(Glazebrook et al. 2003) All GDDS galaxies Masses of GDDS galaxies

  46. Mass-Redshift relation K<17.9 local z<0.5 sample(Glazebrook et al. 2003) GDDS galaxies LBGs

  47. GDDS: summary • GDDS hits complete sample at z>1 • Photo-z selection z>1 ~works • Gets spectra via ‘nod & shuffle’ sky cancellation • Successfully commissioned July-Aug 2002, have data on first (half) field • Are we seeing a dearth of high mass galaxies at z>1 ? Possible epoch of mass assembly? • TO COME 2002-2003: Complete 3 GDDS fields, secure 100 redshifts Apply for HST/ACS imaging for morphologies Mass function vs Morphology vs z.

  48. z=1.4, I-K=2.7 GDDS: seeking old galaxies at z>1

More Related