1 / 73

Semiconductor (solid state) detectors

Semiconductor (solid state) detectors. Introduction Principle of semiconductors Silicon detectors, p-n junction, depleted region, induced charge energy measurement, germanium detectors position measurement, silicon strip detectors, pixel detectors

candy
Télécharger la présentation

Semiconductor (solid state) detectors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor (solid state) detectors Introduction Principle of semiconductors Silicon detectors, p-n junction, depleted region, induced charge energy measurement, germanium detectors position measurement, silicon strip detectors, pixel detectors silicon drift detectors 6. DEPFET 7. Photon detectors, APD, SiPM 8. 3D detectors Experimentální metody jaderné a subjaderné fyziky

  2. 1. Introduction Experimentální metody jaderné a subjaderné fyziky

  3. Experimentální metody jaderné a subjaderné fyziky

  4. Experimentální metody jaderné a subjaderné fyziky

  5. Experimentální metody jaderné a subjaderné fyziky

  6. Principle of semiconductors Experimentální metody jaderné a subjaderné fyziky

  7. hole conduction Experimentální metody jaderné a subjaderné fyziky

  8. - E - Experimentální metody jaderné a subjaderné fyziky

  9. electron concentration g(E) - density of electron state in the conduction band f(E) ⦁ g( E) – electron concentration lowest energy level in the conduction band g() ≡ density of electron states in the lowest energy level approximation : f ≈ electron concentration in the lowest energy level hole concentration - density of hole state in the highest energy level of the valence band hole concentration in the highest energy level Boltzmann constant k ≈ 8.6 ⦁ eV⦁ E- Experimentální metody jaderné a subjaderné fyziky

  10. = - Experimentální metody jaderné a subjaderné fyziky

  11. = = μ mobility, E external electric field Current : J = e + = σ E, σ - conductivity R = 1/σ - resistivity Experimentální metody jaderné a subjaderné fyziky

  12. Recombination and trapping of the charge carriers i) Direct recombination ii) Recombination resulting from impurities in the crystal a) b) iii) Trapping resulting from impurities in the crystal iv) Structural defects in the lattice

  13. 3. Silicon semiconductors, p – n junction Si: Experimentální metody jaderné a subjaderné fyziky

  14. Experimentální metody jaderné a subjaderné fyziky

  15. n- type semiconductor Experimentální metody jaderné a subjaderné fyziky

  16. Experimentální metody jaderné a subjaderné fyziky

  17. p- type semiconductor Experimentální metody jaderné a subjaderné fyziky

  18. Experimentální metody jaderné a subjaderné fyziky

  19. Experimentální metody jaderné a subjaderné fyziky

  20. Experimentální metody jaderné a subjaderné fyziky

  21. Experimentální metody jaderné a subjaderné fyziky

  22. Experimentální metody jaderné a subjaderné fyziky

  23. Concentration of acceptors Concentration of donors Maxwell equations: Approximation of charge densities

  24. Using resistivity of n-type R = 1/(e + ) in n-type, = 0 d= d= For R≈ 20 000d= 75 μm For reversed bias V= d ~ 300 μm R Experimentální metody jaderné a subjaderné fyziky

  25. d d d d over-dopped p-type Experimentální metody jaderné a subjaderné fyziky

  26. Experimentální metody jaderné a subjaderné fyziky

  27. metal HV depletion region Ohmic contact : direct metal – p-type not possible, because of the barrier between metal and p-type instead heavily doped p-type and then a metal Experimentální metody jaderné a subjaderné fyziky

  28. Induced charge d - thickness of the depletion region Q - charge in the depletion region page 25: but different coordinate frame, zero at the junction ,resistivity R=1/( ) x ⟶ x - , ≡ d, E=-dV/dx ε/R

  29. Induced charge at ( i.e. If x(t) =0 t ⟶ Experimentální metody jaderné a subjaderné fyziky

  30. Ex. /pair a good preamplifier needed, low noice

  31. DC direct coupling, AC Experimentální metody jaderné a subjaderné fyziky

  32. 4. Energy measurement • Construction of p-n junctions • Diffusedjunction diode: diffusion of donors to p-type at the temperature • 1000 C • Surface barrier junction: junction between a semiconductor and a • metal • n-type Si with Au, p-type Si with Al • sensitive to light • Ion-implanted junctions: a substrate is bombarded by ions from an • accelerator Depleted region small ⟹ energy measurement for low energies Experimentální metody jaderné a subjaderné fyziky

  33. Experimentální metody jaderné a subjaderné fyziky

  34. Experimentální metody jaderné a subjaderné fyziky

  35. Compensating materialsdeveloped to increase the depletion region by lithium drifting process known as p-i-n junction Li diffused to p-type, a narrow n-type is created electrons drifted to p-type, negative space charge application of HV ⟶ positive Li ions drifted to p-type for sufficient time to create ⟹ the same concentration of positive ions and electrons t ⟹no space charge, i.e. compensated region resistivity up to 100 000 Ω width of compensating region 10-15 mm Si(Li) , the noise is much greater then in normal Si cooling is needed Experimentální metody jaderné a subjaderné fyziky

  36. Energy resolution Fluctuation of energy losses in the depleted region most probable energy loss Landau fluctuation Experimentální metody jaderné a subjaderné fyziky

  37. Germanium detectors suitable for γ detection, Operation at low temperature, liquid nitrogen lithium compensated germanium Resolution at 1.33 MevGe detector 0.15 % NaI 8 % Experimentální metody jaderné a subjaderné fyziky

  38. 5. Position measurement, silicon strip and pixel detectors i) Manufacturing of Si strip detectors ii) Microstrip detectors iii) Position resolution iv) Pixel detectors v) Silicon drift detectors Experimentální metody jaderné a subjaderné fyziky

  39. i) Experimentální metody jaderné a subjaderné fyziky

  40. Experimentální metody jaderné a subjaderné fyziky

  41. Experimentální metody jaderné a subjaderné fyziky

  42. ii) R Experimentální metody jaderné a subjaderné fyziky

  43. Experimentální metody jaderné a subjaderné fyziky

  44. Experimentální metody jaderné a subjaderné fyziky

  45. Experimentální metody jaderné a subjaderné fyziky

  46. iii) Experimentální metody jaderné a subjaderné fyziky

  47. Experimentální metody jaderné a subjaderné fyziky

  48. Experimentální metody jaderné a subjaderné fyziky

More Related