1 / 22

GERDA @ LNGS (GERmanium Detector Assembly

GERDA @ LNGS (GERmanium Detector Assembly. Stefan Sch ö nert MPIK Heidelberg NOW 2004, Sept. 12, 2004. u. e -. d. n e. L=2. W -. n e. W -. d. e -. u. Physics goals. Primary Objective:. 0 : (A,Z)  (A,Z+2) + 2e -.

chanel
Télécharger la présentation

GERDA @ LNGS (GERmanium Detector Assembly

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GERDA @ LNGS(GERmanium Detector Assembly Stefan Schönert MPIK Heidelberg NOW 2004, Sept. 12, 2004

  2. u e- d ne L=2 W- ne W- d e- u Physics goals Primary Objective: 0: (A,Z)  (A,Z+2) + 2e- (decay generated by (V-A) cc-interaction via exchange of three Majorana neutrinos) mee= |iUei ²mi | Effective neutrino mass: • Majorana nature, Mass scale, Majorana CP phases Method: Operation of HP Ge-diodes enriched in 76Ge in (optional active) cryogenic fluid shield. Line search at Qββ= 2039 keV

  3. H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorets, I.V. Krivosheina, NIM A, 2004 | mee| in eV Phase I: Lightest neutrino (m1) in eV Phase II: Phase III: Range of meederivedfrom oscillation experiments mee= f(m1, m²sol, m²atm, 12 , 13, -) Sensitivity of this project: F.Feruglio, A. Strumia, F. Vissani, NPB 659

  4. Status of GERDA • Proto-collaboration formed in Feb. 2004 • LoI discussed at LNGS April 2004 • Formal collaboration forming completed Sep. 9/10 (incl. MoU, etc.) • Proposal submission to LNGS SC Sep. 17 • Discussion with LNGS SC Oct. 14-16 • Funding: • Kurchatov, INR, ITEP (in-kind contribution of Ge-76 diodes) • MPG (MPIK Heidelberg + MPI Munich) [approved] • INFN (LNGS, Milano, Padova) [discussion Sep. 04] • BMBF (Tuebingen) [call for proposal issued]

  5. Collaboration • INFN LNGS, Assergi, Italy • JINR, Dubna, Russia • MPI für Kernphysik, Heidelberg, Germany • Univ. Cracow, Poland • Institut für Kernphysik, Univ. Köln, Germany • Univ. di Milano Bicocca e INFN Milano, Milano, Italy • INR, Moscow, Russia • ITEP, Moscow, Russia • Kurchatov Institute, Moscow, Russia • MPI für Physik, München, Germany • INFN and Univ., Padova, Italy • Physikalisches Institut, Univ. Tübingen, Germany

  6. The experimental concept • Reduction of backgrounds (bgd’s) key to sensitivity : • Lifetime limit • w/o backgrounds: t1/2  (MT) • with backgrounds: t1/2  (MT)1/2 • Bgd’s in HdM & IGEX dominated by external activities in the shielding and cladding materials • Operation of bare Ge diodes in LN2 / LAr shield (Heusser, Ann, Rev. Nucl. Part. Sci. 45 (1995) 543); other proposals based on this idea: GENIUS (H.V. Klapdor-Kleingrothaus et. al., hep-ph/9910205 (1999)); GEM (Y.G. Zdesenko et al., J. Phys. G27 (2001)) • Shielding against external bgd’s by high-purity cryogenic fluid shield. Optional: active anticoincidence with scintillation light from LAr  Goal: background free!

  7. Phases of the experiment and physics reach • Phase I: implementation of existing Ge-76 diodes (~20 kg) of HdM and IGEX in new experiment (“background free”) • operation in LN2/LAr with external background <10-3 / keV kg y • >15 kg y (free of background): scrutinize claim (97.8% excl. or 5 sigma confirmation) • Sensitivity: 3·1025 y, 0.24-0.77 eV • Phase II: enlarge to ~35-40 kg (segmented detectors, possibly LAr scintillation readout ) • within 2-3 years: ~100 kg y • Sensitivity: 2·1026 y, 0.09-0.29 eV • Phase III: (depending on physics results of Phase I+II and on the understanding of backgrounds) • world-wide collaboration: ~500 kg

  8. External shield design

  9. 1 2 β 2+β 2+β 1+ Design Considerations:cosmogenic Co-60 in Ge-diodes Qββ • T0 for cosmic ray exposure: completion of mono-zone refinement • Exposure to cosmic rays above ground for 10 days: 0.17 Bq/kg [Avignone 92] • 0.9 10-3 / keV kg y • Kurchatov crystals: ~5 10-3 / (keV kg y) in 2006

  10. Background discrimination techniques • Anti-coincidence between different detectors in the setup • Pulse shape analysis (PSA) • Coincidences in the decay chain (Ge-68) • Segmentation of one of the readout electrodes • Scintillation light detection (LAr)

  11. Bgd. summary (Phase II)

  12. LAr scintillation readout: example 60Co • Cosmogenic activities: • Production after completion of crystal growth • Exposure to cosmic rays above ground for 10 days: 0.9 ·10-3 /(kg keV y)

  13. , Wavelength shifter Reflector (VM2000) Reduction factor ~100 60Co: no vs. active suppression

  14. Mounting the PMT Opening cryostat after first run germanium crystal No. of counts No anticoincidence LAr-anticoinc. (r=10 cm) Channel No anticoincidence LAr-anticoinc. (r=10 cm) Ongoing R&D programBare Ge-diode in LAr: simultaneous readout of scintillation light Wavelength- shifter (WLS) VM2000 Reflector/WLS foil 54Mn source (E=835 keV) Ge crystal Nylon fixture r=10 cm

  15. Liquid Argon Germanium Test Bench (LArGe-TB) Vol. 1.3 m3 Height 3.6 m Diam. 2.5 m Refurbish of LENS LBF

  16. Schedule(provided approval, funding + LNGS refurbishments completed timely) • Start construction of infrastructure in 2005 • Detector commissioning and start physics data taking (Phase-I) 2006 • Procurement of new enriched material 2004/5 • Start of Phase-II could start early and overlap with Phase-I (funding permitted)

More Related