1 / 9

Zuzana Dlouhá

4EK211 Základy ekonometrie Modely simultánních rovnic Problém identifikace strukturních simultánních rovnic Cvičení 12 13. 5. / 14. 5. 2014. Zuzana Dlouhá. Modely simultánních rovnic (MSR).

channer
Télécharger la présentation

Zuzana Dlouhá

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4EK211 Základy ekonometrieModely simultánních rovnicProblém identifikace strukturních simultánních rovnicCvičení 12 13. 5. / 14. 5. 2014 Zuzana Dlouhá

  2. Modely simultánních rovnic (MSR) existence vzájemných vazeb mezi proměnnými v modelu, které nemůžeme popsat pouze jednou rovnicí, nýbrž soustavou rovnic, ve kterých jsou proměnné vzájemně závislé rekurzivní MSR = mezi proměnnými v MSR neexistuje zpětná vazba, ale pouze jednostranná závislost interdependentní MSR = mezi endogenními proměnnými v MSR existují zpětné vazby Proměnné v MSR: endogenní – snažíme se vysvětlit pomocí modelu (Y) exogenní – proměnné určené mimo model (X) predeterminované – exogenní + zpožděné endogenní (Xt, Yt-1) Rovnice v MSR: stochastické – neznámé parametry + náhodná složka identita – bilanční rovnice, podmínka rovnováhy nebo definiční rovnice 2

  3. Modely simultánních rovnic (MSR) Uvažujme příklad: Ct = α0 + α1Yt + α2Ct-1 + ut1 (1) Yt = β0 + β1It + β2Mt + ut2 (2) It = γ0 + γ1Rt + γ2It-1 + ut3 (3) Gt = Yt – Ct – It (4) (1)-(3) = stochastické rovnice (4) = identita endogenní proměnné: Ct, Yt, It, Gt exogenní proměnné: Mt, Rt predeterminované proměnné: Mt, Rt, Ct-1, It-1 3

  4. Modely simultánních rovnic (MSR) Možné tvary MSR strukturní tvar = strukturní rovnice a strukturní parametry – specifikace vychází z ekonomické teorie (znázorňuje strukturu zkoumaného systému) Ct = α0 + α1Yt + α2Ct-1 + ut1 (1) Yt = β0 + β1It + β2Mt + ut2 (2) It = γ0 + γ1Rt + γ2It-1 + ut3 (3) Gt = Yt – Ct – It (4) redukovaný tvar = vyjádříme všechny endogenní proměnné jako funkce pouze predeterminovaných proměnných – tj. zkusím z rovnice (2) dosadit Yt do rovnice (1) a podívám se, jestli jsou na pravé straně jenom predeterminované proměnné,… – nemění se počet rovnic modelu – někdy nelze vyjádřit všechny endogenní proměnné jako funkce predeterminovaných proměnných jednoznačně!!! – parametry redukovaného tvaru = přímé / běžné a dynamické multiplikátory konečný tvar = v případě, když MSR obsahuje zpožděné endogenní proměnné – jednotlivé nezpožděné endogenní proměnné jsou funkce jejich hodnot ve výchozím období, běžných a zpožděných hodnot exogenních proměnných a náhodných složek 4

  5. Problém identifikace strukturních simultánních rovnic viz dokument MSR_identifikace.doc 5

  6. Problém identifikace – příklady 1. Stanovte identifikaci soustavy: y1t= β13y3t + δ11x1t + δ13x3t+ δ14x4t + u1t y2t= β21y1t + β23y3t + δ21x1t+ δ22x2t+ δ23x3t + u2t y3t= β31y1t + δ31x1t + δ34x4t + u3t 2. Stanovte identifikaci soustavy: y1t= β10 + α12y2t + α14x1t+ β12x2t + u1t y2t = β20 + α22y2,t-1 + β21x1t + u2t y3t= β30 + α31y1t + β31x1t + β33y2,t-1 + u3t y4t= β40 + α42y2t + β41x1t + β43y2,t-1 + u4t 6

  7. Metody odhadu MSR S omezenou informací nezohledňují informace z ostatních rovnic, odhaduji každou rovnici zvlášť, nejsou tak náročné na počet pozorování, nejsou výpočetně složité, jsou v praxi rozšířenější, metody vycházející z MNČ: např. metoda nepřímých nejmenších čtverců (MNNČ), metoda dvoustupňových nejmenších čtverců (M2NČ). S úplnou informací odhadují všechny rovnice najednou, berou tedy v potaz všechny informace obsažené ve všech rovnicích, vyžadují větší počet pozorování, z logiky věci se zdají být vhodnější pro MSR, jsou výpočetně náročnější, jsou velmi citlivé na specifikační chyby, pokud špatně specifikujeme jednu rovnici, chyba se rozšíří do všech rovnic, metody vycházející z MNČ: např. metoda třístupňových nejmenších čtverců (M3NČ). 7

  8. Modely simultánních rovnic (MSR) – příklad Soubor: CV12_PR1.xls Data: C= celková spotřeba ve stálých cenách; endogenní Y = HDP ve stálých cenách; endogenní I =hrubé investice do výroby ve stálých cenách; předetermin. Zadání: MSR ve strukturálním tvaru: Ci = α0 + α1Yi + u1i Yi = β0 + β1Ii + u2i Yi = Ci + Iii = 1,2,…,8 odvoďte redukovaný tvar modelu je soustava identifikovaná? odhadněte MSR pomocí EViews 8

  9. Modely simultánních rovnic (MSR) – příklad Soubor: CV12_PR2.xls Data: y1t= cena zboží (USD/kg) y2t= objem zboží (kg) x1t= cena substitučního zboží (USD/kg) x2t= disponibilní příjem (USD) x3t= cena pronájmu skladovacích prostor (USD/den) Zadání: MSR ve strukturálním tvaru: y2t= α0 + α1y1t + α2x1t + α3x2t + u1t y2t= β0 + β1y1t + β2x3t + u2t Redukovaný tvar MSR: je soustava identifikovaná? odhadněte MSR pomocí EViews 9

More Related