1 / 52

Lake Superior Region Carbon Cycle

Lake Superior Region Carbon Cycle. Ankur R Desai Atmospheric & Oceanic Sciences University of Wisconsin-Madison (and the CyCLeS team). Viewed from the air . Lake Superior Biogeochemistry Workshop August 5, 2008. What’s in the airwaves?. Lakes, lands, & carbon The atmospheric tracer view

charlot
Télécharger la présentation

Lake Superior Region Carbon Cycle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lake Superior Region Carbon Cycle Ankur R Desai Atmospheric & Oceanic Sciences University of Wisconsin-Madison (and the CyCLeS team) Viewed from the air Lake Superior Biogeochemistry Workshop August 5, 2008 desai@aos.wisc.edu

  2. What’s in the airwaves? • Lakes, lands, & carbon • The atmospheric tracer view • An eddy flux view • Lake Superior & micrometerology desai@aos.wisc.edu

  3. Lakes, Land, & Carbon desai@aos.wisc.edu

  4. The big picture • Sarmiento and Gruber, 2002, Physics Today desai@aos.wisc.edu

  5. Slightly smaller picture • Cardille et al. (2007) desai@aos.wisc.edu

  6. Real Numbers Are Complicated • Atmos. flux: ~3-12 Tg yr-1 - 35-140 gC m-2 yr-1 desai@aos.wisc.edu

  7. An Oceanic Lake • CyCLeS: Cycling of Carbon in Lake Superior • Adapt the MIT-GCM ocean model to simulate physical and biogeochemical environment of Lake Superior • Physical model of temperature, circulation • Mostly implemented • Biogeochemical model of trace nutrients and air-sea exchange • In progress desai@aos.wisc.edu

  8. Interesting Questions • How do magnitudes of lake and land flux compare and what does it imply for regional carbon budgets? (NACP, SOCCR) • Are interannual variations in lake and land CO2 surface-atmosphere flux related and if so, due to what environmental forcing? • Can we “see” and constrain lake (and land) flux from regional atmospheric CO2 observations? • What are impacts on atmospheric forcing (temperature, stable layer depth, CO2) on lake biogeochemistry? desai@aos.wisc.edu

  9. The Atmospheric Tracer View desai@aos.wisc.edu

  10. Global CO2 • NOAA/ESRL/GMD/CCGG desai@aos.wisc.edu

  11. Global Experiment • Marland et al., DOE/CDIAC desai@aos.wisc.edu

  12. The Inverse Idea desai@aos.wisc.edu

  13. The Inverse Idea • Courtesy S. Denning, CSU desai@aos.wisc.edu

  14. The Inverse Idea • Peters et al (2007) PNAS desai@aos.wisc.edu

  15. Inversion and a Very Big Tower • WLEF-TV (PBS) • Park Falls, WI • 447-m tall • 6 levels [CO2] • 11 to 396 m • 3 levels CO2 flux • 30,122,396 m • Mixed landscape • Representative? • Running 1995- desai@aos.wisc.edu

  16. A 1-point Inversion • [CO2] Air flowing over lake > [CO2] over land desai@aos.wisc.edu

  17. Air and Lake CO2 Comparison • Simple boundary layer budget tracer study suggests summer 2007 efflux: 4-14 gC m-2 d-1 • extrapolated to ~30-140 gC m-2 yr-1 • Analysis requires modeling of stable marine boundary layer • Larger than traditional air-sea pCO2 exchange calculation • Requires significant respiration in water column • Urban et al. (in press) desai@aos.wisc.edu

  18. The Boundary Layer Problem • Courtesy of S. Spak, UW desai@aos.wisc.edu

  19. Getting More Sophisticated • Courtesy M. Uliasz, CSU • Tracer transport modeled influence function August 2003 at WLEF entire domain water land desai@aos.wisc.edu

  20. Great Lakes Influence at WLEF • Land: 85.4% • Lake Superior: 9.5% • Lake Michigan: 1.8% • Other water: 3.1% desai@aos.wisc.edu

  21. The Potential • Potential exists for constraining flux and interannual var. with local observations of CO2 1996 2003 desai@aos.wisc.edu

  22. An Eddy Flux View desai@aos.wisc.edu

  23. Eddies? • Tracers in boundary layer primarily transported by turbulence • Ensemble average turbulent equations of motion and tracer concentration provide information about the effect of random, chaotic turbulence on the evolution of mean tracer profiles with time • In a quasi-steady, homogenous surface layer, we can simplify this equation to infer the surface flux of a tracer desai@aos.wisc.edu

  24. Eddies! desai@aos.wisc.edu

  25. The Maths • *Some simplifications made… Storage Turbulent flux • Equipment: • 3D sonic anemometer • Open or closed path gas analyzer • 5--20 Hz temporal resolution • Multiple level CO2 profiler desai@aos.wisc.edu

  26. The Data desai@aos.wisc.edu

  27. The Data Pt. 2 desai@aos.wisc.edu

  28. The Data Pt. 3 desai@aos.wisc.edu

  29. Much Data… desai@aos.wisc.edu

  30. A CHEAS-y Lake desai@aos.wisc.edu

  31. Scale This! desai@aos.wisc.edu

  32. Some Observations Desai et al, 2008, Ag For Met desai@aos.wisc.edu

  33. The 6x6 km View desai@aos.wisc.edu

  34. More Observations desai@aos.wisc.edu

  35. Land History desai@aos.wisc.edu

  36. Land History • Have to account for age structure too desai@aos.wisc.edu

  37. All The ChEAS Flux Data desai@aos.wisc.edu

  38. Magically Scaled desai@aos.wisc.edu

  39. The “Bottom-Up” Flux desai@aos.wisc.edu

  40. Evaluation • “Top-down” vs “Bottom-up” desai@aos.wisc.edu

  41. Evaluation desai@aos.wisc.edu

  42. Land • 1989-2006 average desai@aos.wisc.edu

  43. Lake? desai@aos.wisc.edu

  44. Lake and Land desai@aos.wisc.edu

  45. Lake Superior & Micrometeorology desai@aos.wisc.edu

  46. Better Forcing? • Many observations are sparse desai@aos.wisc.edu

  47. Better [CO2] desai@aos.wisc.edu

  48. Coherent Interannual Variability desai@aos.wisc.edu

  49. Lake Interannual Variability Annual avg. dissolved organic carbon (DOC) desai@aos.wisc.edu

  50. More measurements • [CO2] over Lake Superior • Continuous CO2 eddy covariance on the lake • Better models of stability over lakes • Spatial atmospheric met data • Temp, wind, precip?, shortwave radiation desai@aos.wisc.edu

More Related