1 / 20

# Logic Gates

Logic Gates. Benchmark Companies Inc PO Box 473768 Aurora CO 80047. Text Description . A. Logic Symbol . Y. B. Truth Table . AND. AND Symbol. Boolean Expression . AND Function (7408). Output Y is TRUE if inputs A AND B are TRUE, else it is FALSE. Y = A x B = A • B = AB.

Télécharger la présentation

## Logic Gates

E N D

### Presentation Transcript

1. Logic Gates Benchmark Companies Inc PO Box 473768 Aurora CO 80047

2. Text Description  A Logic Symbol  Y B Truth Table  AND AND Symbol Boolean Expression  AND Function (7408) Output Y is TRUE if inputs A AND B are TRUE, else it is FALSE. Y = A x B = A • B = AB

3. Text Description  OR A Logic Symbol  Y B Truth Table  OR Symbol Boolean Expression  OR Function (7432) Output Y is TRUE if input A OR B is TRUE, else it is FALSE. Y = A + B

4. A Y NOT Alternative Notation Y = A’ NOT Bar Y = !A Y = A NOT Function (inverter)(7404) Output Y is TRUE if input A is FALSE, else it is FALSE. Y is the inverse of A. Text Description  Logic Symbol  Truth Table  Boolean Expression 

5. Text Description  A bubble is an inverter This is an AND Gate with an inverted output A Logic Symbol  Y B NAND Truth Table  Boolean Expression  Y = A x B = AB NAND Function (7400) Output Y is FALSE if inputs A AND B are TRUE, else it is TRUE.

6. Text Description  A bubble is an inverter. This is an OR Gate with its output inverted. A Logic Symbol  Y B NOR Truth Table  Boolean Expression  Y = A + B NOR Function (7402) Output Y is FALSE if input A OR B is TRUE, else it is TRUE.

7. A AND AND B Y OR NOT C A B C Y 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Circuit-to-Truth Table Example 2# ofInputs = # of Combinations 2 3 = 8

8. 0 A 0 AND AND B Y OR NOT 0 C A B C Y 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Circuit-to-Truth Table Example 0 0 1 0

9. 0 0 A 0 AND AND B 1 Y OR NOT 1 1 1 C A B C Y 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Circuit-to-Truth Table Example

10. 0 0 A 1 AND AND B 0 Y OR NOT 1 0 0 C A B C Y 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Circuit-to-Truth Table Example

11. 0 0 A 1 AND AND B 1 Y OR NOT 1 1 1 C A B C Y 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Circuit-to-Truth Table Example

12. 1 0 A 0 AND AND B 0 Y OR NOT 0 0 0 C A B C Y 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 Circuit-to-Truth Table Example

13. 1 0 A 0 AND AND B 0 Y OR NOT 0 0 1 C A B C Y 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 Circuit-to-Truth Table Example

14. 1 1 A 1 AND AND B 1 Y OR NOT 0 0 0 C A B C Y 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 Circuit-to-Truth Table Example

15. 1 1 A 1 AND AND B 1 Y OR NOT 0 0 1 C A B C Y 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 Circuit-to-Truth Table Example

16. A B A A AND AND B Y = A B + A C OR } NOT } C A C A B C Y 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 Circuit-to-Boolean Equation

17. A AND AND B Y OR NOT C A - O - I Logic AND Gates Other Logic Arrangements: NAND - NAND Logic NOR - NOR Logic OR Gates INVERTER Gates

18. S T NAND S T 0 0 NAND 1 A Y B NAND Gate – Special Application 0 1 1 0 Equivalent To An Inverter Gate

19. S T NOR A Y B NOR S T 0 0 1 NOR Gate - Special Application 0 1 1 0 Equivalent To An Inverter Gate

20. End of Presentation

More Related