370 likes | 505 Vues
Conservation Laws Related to Kac-Moody-Virasoro Symmetries. S. Y. Lou M. Jia and X. Y Tang. Introduction KMV Symmetry Group KMV Symmetry Algebra Systems with Same KMV ConsLaws w.r.t. same KMV Summary and discussions. Introduction KMV Symmetry Group KMV Symmetry Algebra
E N D
Conservation Laws Related to Kac-Moody-Virasoro Symmetries S. Y. Lou M. Jia and X. Y Tang
Introduction • KMV Symmetry Group • KMV Symmetry Algebra • Systems with Same KMV • ConsLaws w.r.t. same KMV • Summary and discussions
Introduction • KMV Symmetry Group • KMV Symmetry Algebra • Systems with Same KMV • ConsLaws w.r.t. same KMV • Summary and discussions
Introduction • A well known fact: Importance • Complicated problem • to • Simple one • always? • Symmetry method: G.C.Sym.
Introduction • An interesting fact: KMV • Various well known 2+1 dim. integrable systems possesses an infinite dimensional (KMV) • Kac-Moody-Virasoro symmetry algebra
Introduction • Methods to find KMV • Standard prolongation meth. • Classical sym. Appro. • Formal series sym. Approach • Group to algebra, method I • Group to algebra, method II
Introduction • KMV Symmetry Group • KMV Symmetry Algebra • Systems with Same KMV • ConsLaws w.r.t. same KMV • Summary and discussions
KMV Symm. Group • Group to algebra, method I (KP) • Ref. J. Phys. A. 38 (2005) L129 • Ansatz
Introduction • KMV Symmetry Group • KMV Symmetry Algebra • Systems with Same KMV • ConsLaws w.r.t. same KMV • Summary and discussions
KMV Symmetry Algebra • Limit case of the KMV Group • Generators in symmetry form
KMV Symmetry Algebra • Generators in vector form
Introduction • KMV Symmetry Algebra • KMV Symmetry Group • Systems with Same KMV • ConsLaws w.r.t. same KMV • Summary and discussions
Systems with Same KMV • Ref: J.Math.Phys.45(04) 1020
Systems with Same KMV • Arbitrary f(t) • independence
Introduction • KMV Symmetry Algebra • KMV Symmetry Group • Systems with Same KMV • ConsLaws w.r.t. same KMV • Summary and discussions
ConsLaws w.r.t. same KMV • For the KMV vector • Calculate the kth prolongation • in standard way
ConsLaws w.r.t. same KMV • The KMV symmetry is said to be asscociated with a conserved vector if • (*) • where .
ConsLaws w.r.t. same KMV • A conjecture on the solution of (*) • are arb. group inv. functions
ConsLaws w.r.t. same KMV • Further work one has to do
ConsL up to 2nd order group inv. • Group invariants ( ):
ConsLaws w.r.t. same KMV • Theorem on the solution of (*) • are arb. functions of
The further constraint becomes
Eq. (55) can be divided to 15 Eqs. because J_i are only functions of 2nd derivatives of u.
Now and are funs. t1-t6.
Introduction • KMV Symmetry Algebra • KMV Symmetry Group • Systems with Same KMV • ConsLaws w.r.t. same KMV • Summary and discussions
Summary • One fact: 2+1 D int. sys. KMV • Two Meths. KMV GroupAlgebra • A family: Systems with same KMV • ∞ ConsLaws: CLs with same KMV • 2nd order CLs: 4 (6D) + 2 (4D) Funcs. • A conjecture? • CLs with KMV valid for a fixed Eq.? • Physical meanings? • More simple methods?