1 / 23

New 3D Detectors Simulations USe & CNM & IFCA

New 3D Detectors Simulations USe & CNM & IFCA. F.R. Palomo 1 , S. Hidalgo 2 , I. Vila 3, fpalomo@us.es salvador.hidalgo@csic.es ivan.vila@csic.es 1 Departamento Ingeniería Electrónica , Escuela Superior de Ingenieros Universidad de Sevilla , Spain

dacus
Télécharger la présentation

New 3D Detectors Simulations USe & CNM & IFCA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. New 3D Detectors Simulations USe & CNM & IFCA • F.R. Palomo1, S. Hidalgo2, I. Vila3, • fpalomo@us.es • salvador.hidalgo@csic.es • ivan.vila@csic.es • 1Departamento IngenieríaElectrónica, Escuela Superior de Ingenieros • Universidad de Sevilla, Spain • 2Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, Barcelona, Spain • 3Instituto de Física de Cantabria, Santander, Spain

  2. Outline • New 3D devices • I-V and MIP simulations • Pennicard Irradiation model, the point is • to ensure convergence (Simulations design • phase) • I-V, MIP & C-V Simulations, Irradiated (2e15 n/cm2)

  3. 3D DESIGN CROSS SECTIONAL VIEW • 3D Detectors, new designsfrom CNM-IMB • Evolvedfromthe FE-I4 3D Detector design • 2 sidecolumns, 10 mm diameter • 230 mm thicknesswafer (4 inchprocess) • p-stop collar around n+ columns • n+, max 1E19 cm-3 • p+, max 1E19 cm-3 • p-stop, max 8E16 cm-3

  4. 3D New Designs • ROC4sens • 50x50 mm2cell • 5 mm width p-stop collar, 22 mm internaldiameter • 200 mm columnlength 75um • 3D PSI46 2E • 75x100 mm2cell • 5 mm width p-stop collar, 17.5 mm internaldiameter • 200 mm columnlength PSI46 2E 30um FERMILAB RD ROCS 2E 100um ROC4sens 50um • 3D FERMILAB RD ROCS 2E • 30x50 mm2cell • 5 mm width p-stop collar, 12 mm internaldiameter • 200 mm columnlength 50um 50um

  5. 3D ROC4sens TCAD MODEL • 175801 EdgesFiniteElements • Structuresdefinedby doping refinements

  6. 3D PSI46 2E TCAD MODEL • 294107 EdgesFiniteElements • Structuresdefinedby doping refinements

  7. 3D FERMILAB RD ROCS 2E TCAD MODEL • 153559 EdgesFiniteElements • Structuresdefinedby doping refinements

  8. I-V SIMULATIONS • BackplaneBias • [0, -180 V]

  9. MIP SIMULATIONS DESIGN • MIP 1.244 KeV-cm2/mg (Si) • #Heavy Ion MIP model • HeavyIon( • Direction=(0 0 1) • Location = (27, 52, -0.8) • Time=0.02e-9 • Length=[0 0.001 230 230.01] • wt_hi=[1.0 1.0 1.0 1.0] • LET_f=[0 1.282e-5 1.282e-5 0] • Gaussian • Picocoulomb • )

  10. MIP SIMULATIONS, -30 V BIAS

  11. MIP SIMULATIONS, -70 V BIAS

  12. Perugia Model (Petasecca et al.) n-typesilicon Perugia model Goodsimulation of leakagecurrents fordiodes (n+/p/p+ p-typesilicon) p-typesilicon Perugia model Numericalsimulation of radiationdamageeffects in p-type and n-type FZ silicondetectors, M.Petasecca et al. IEEE TNS 53(5), 2006 pp2971-2976 Numericalsimulation of radiationdamageeffects in p-typesilicondetectors, NIMA 563 (1), 2006, pp192-195

  13. PennicardModel (CNM-Glasgow) p-typesiliconPennicardmodel (adaptfrom Perugia model) Comparisonbetweensimulated and experimental CCE in a “3 column” ATLAS detector. Simulated “3 column” ATLAS detector 1016neq/cm2 p-typesilicon Perugia model Reason: Perugia free trappingnotenough, correctleakage current (oreffectivedopping) so new sc, sh are defined. Simulations of radiation-damaged 3D detectorsfortheSuper-LHC, D.Pennicard et al. NIMA 592(1-2), 2008, pp16-25

  14. I-V SIMULATIONS (258K) • BackplaneBias, [0, -180 V] • 2e15 n/cm2irradiation, Pennicardmodel • (Convergencewellunderstood) Irradiated 2e15 n/cm2 PennicardModel Non Irradiated 3 orders of magnitudeIleakincrease

  15. C-V SIMULATIONS DESIGN • System{ • # 3D Detector instance and voltagesourcesconnections • threeDdetector (junction=cnbackplane=cp) • Vsource_psetvcn (cn 0) {dc=0} • Vsource_psetvcp (cp 0) {dc=0} • } • # AC Analysis • Quasistationary • ( InitialStep=1e-3 MaxStep=0.005 MinStep=1e-6 • Goal{Parameter=vcn.dcVoltage=+80}) • { • ACCoupled ( • StartFrequency=1e6 EndFrequency=1e6 • NumberOfPoints=1 Decade • Iterations=100 , notdamped=5 • Node(cncp) Exclude(vcnvcp) • ) • { PoissonElectronHole } • } 4 Simulationsforeachdevice, at 1e3, 1e4, 1e5 1e6 Hz AC signal

  16. C-V Simulations ROC4sens (258K) Irradiated 2e15 n/cm2 PennicardModel ~47.6 fF (1E6 Hz) Non Irradiated ~47.4 fF

  17. C-V Simulations PSI46 2E (258K) Irradiated 2e15 n/cm2 PennicardModel ~39.2 fF (1E6Hz) Non Irradiated ~36.7 fF

  18. C-V Simulations FERMILAB RD ROCS 2E (258K) Non Irradiated ~49.0 fF Irradiated 2e15 n/cm2 PennicardModel ~49.3 fF (1E6 Hz)

  19. MIP SIMULATIONS, -30 V BIAS, Irrad2e15 n/cm2 Irrad 2e15 n/cm2Pennicard

  20. MIP SIMULATIONS, -70 V BIAS Irrad 2e15 n/cm2 Irrad 2e15 n/cm2Pennicard

  21. LGAD Detectors (300 mm thicknessdevice, MIP hit) Collector Ring Junction Terminator X/Y ratio = 10:1 forillustration 2970mm Junction Terminator Collector Ring 300 mm BiasImpactIonization, MIP hit at 20 ps, ImpactIonizationafter-hit evolution

  22. Ourfuturesimulations • Working in radiation damage of 3D detectors with CMS trap models • (2e15, 5e15, 1e16, 2e16 n/cm2) • Working in simulation of LGAD detectors

  23. Thanksforyourattention • fpalomo@us.es • salvador.hidalgo@csic.es • ivan.vila@csic.es

More Related