1 / 9

10. Convolution-based Edge Detection

10. Convolution-based Edge Detection. edge detection computer vision 의 제일 중요한 연산 edge 물체의 경계점 ( boundary of objects) abrupt intensity change ( 급격한 명암 변화) 지점 다양한 edge detection 연산자 1 차 미분에 기반 Roberts Sobel 등 2차 미분에 기반 Laplacian 응용에 따라 요구 다름 아직 미해결 문제 인간 시각은 응용에 adaptive 하게 작동.

dara
Télécharger la présentation

10. Convolution-based Edge Detection

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 10. Convolution-based Edge Detection • edge detection • computer vision의 제일 중요한 연산 • edge • 물체의 경계점 (boundary of objects) • abrupt intensity change (급격한 명암 변화) 지점 • 다양한 edge detection 연산자 • 1차 미분에 기반 • Roberts • Sobel 등 • 2차 미분에 기반 • Laplacian • 응용에 따라 요구 다름 • 아직 미해결 문제 • 인간 시각은 응용에 adaptive하게 작동

  2. 10.1 Laplacian Filter • Laplacian operator • P.S. Laplace (French mathematician, 1749-1827) • Laplacian • 2f(x,y) = 2f/ x2 + 2f/ y2 (함수 f의 2ndorder partial derivative) • intensity 변화 없는 경우 Laplacian은 0 • 즉, edge 아닌 곳에서는 0, edge 에서 (즉, intensity 변화) 반응) • discrete image에서 approximation • 2f(x,y)=4f[x][y]-f[x-1][y]-f[x+1][y]-f[x][y-1]-f[x][y+1] • 즉, Laplacian kernel (요소합은 0) 0 -1 0 -1 4 -1 0 -1 0

  3. 10.1 Laplacian Filter • Laplacian 이용한 edge detection (1) Laplacian operator 적용 후 thresholding • 예) 수직 edge 가진 8*8 image 33335555 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 Laplacian 적용 Thresholding (T=1)

  4. 10.1 Laplacian Filter • Laplacian 이용한 edge detection (2) Laplacian operator 적용 후 zero crosssing 탐지 • 예) 수직 edge 가진 8*8 image 33335555 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 0 0 –2 2 0 0 0 0 0 1 0 0 33335555 Laplacian 적용 zero-crossing

  5. 10.1 Laplacian Filter • Laplacian edge detector • 2차미분 연산자 • edge 방향 정보 없음 • noise 많이 발생 • LoG operator • noise 줄이기 위한 목적 • LoG operator 모양 (Mexican hat kernel): Figure 10-5 • 실제 구현에서는 • Gaussian filter 적용 후 Laplacian 적용 • 3*3 kernel 경우 1 2 1 0 -1 0 2 4 2 * 1/16 -1 4 -1 1 2 1 0 -1 0 Gaussian Laplacian • 적용 예: Figure 10-3

  6. 10.2 Robert’s operator • gradient (1차미분)기반 operators • Roberts • Sobel • Prewitt • gradient • f(x,y) = (f/x, f/y) • f/x: x 방향 edge 성분 • f/y: y 방향 edge 성분 • digital space • f/x = f[x][y] – f[x+1][y+1] 0 1 0 0 0 –1 0 0 0 • f/y = f[x+1][y] – f[x][y+1] 0 0 1 0 -1 0 0 0 0

  7. 10.2 Robert’s operator • edge magnitude (에지 강도) • |f(x,y)| = ((f/x)2 + (f/y)2)1/2 • digital space • ((f[x][y] – f[x+1][y+1])2 + (f[x+1][y] – f[x][y+1])2)1/2 • Roberts 적용 • Figure 10.6 • Roberts 적용 후 thresholding • Figure 10.7 • UNHE 적용 후 • Roberts 적용

  8. 10.3 Sobel operator • Sobel operator • f/x 1 0 -1 2 0 -2 1 0 -1 • f/y -1 -2 -1 0 0 0 1 2 1

  9. 10.3 Sobel operator • Sobel 적용 • Figure 10.8 • Figure 10-9 • Figure 10-10 • Figure 10-11 • Figure 10-12

More Related