550 likes | 887 Vues
Pescia, 14 dicembre 2012. Le linee guida dei nuovi tecnici e l’insegnamento della matematica. Insegnare per competenze. Pietro Di Martino Dipartimento di Matematica dimartin@dm.unipi.it. Le linee guida per gli Istituti Tecnici d.P.R. 15 marzo 2010, articolo 8, comma 3.
E N D
Pescia, 14 dicembre 2012 Le linee guida dei nuovi tecnici e l’insegnamento della matematica Insegnare per competenze Pietro Di Martino Dipartimento di Matematica dimartin@dm.unipi.it
Le linee guida per gli Istituti Tecnicid.P.R. 15 marzo 2010, articolo 8, comma 3
Il rinnovamento degli istituti tecnici va inquadrato all’interno della cooperazione europea per la costituzione di un sistema condiviso di istruzione e formazione tecnico-professionale (Vocational Education and Training) e, più in generale, in coerenza con gli impegni assunti dal nostro Paese a seguito del Consiglio di Lisbona del 2000. Il Quadro europeo delle qualifiche per l’apprendimento permanente consente, in particolare, di mettere in relazione e posizionare i diversi titoli (qualifiche, diplomi, certificazioni, ecc.) rilasciati nei Paesi membri. Il confronto si basa sui risultati dell’apprendimento (learning outcomes) e risponde all’esigenza di raggiungere diversi obiettivi, tra cui quello di favorire la mobilità e l’apprendimento permanente attraverso la messa in trasparenza di titoli di studio, qualifiche e competenze L’attenzione è rivolta ai risultati di apprendimento (outcome-based approach), piuttosto che alla durata degli studi (numero di anni), alle modalità o alle situazioni di apprendimento (formale, informale, non-formale) o alle modalità di insegnamento (input-based approach). Al centro è posta, quindi, la persona che apprende, indipendentemente dal tipo di percorso seguito per apprendere.
Nuova organizzazione Il numero degli istituti tecnici passa da 39 indirizzi (più le sperimentazioni) pre-riforma ad 11, così suddivisi: 2 indirizzi nel settore economico e 9 indirizzi nel settore tecnologico (quasi tutti con articolazioni nel triennio)
Il raccordo tra l’area di istruzione generale e di indirizzo L’Area di istruzione generale, più ampia nel primo biennio (560 ore annue), decresce nel secondo biennio e nel quinto anno (495 ore annue), in quanto il consolidamento delle competenze culturali è comunque assicurato dalle Aree di indirizzo L’Area di istruzione generale e le Aree di indirizzo sono in un rapporto di dinamica integrazione. Conoscenze ed abilità delle discipline generali e di indirizzo vengono ulteriormente sviluppate attraverso la reciproca valorizzazione della dimensione pratico-funzionale e teorico-culturale
Percorsi degli Istituti Tecnici VALORE STRUMENTALE I percorsi degli istituti tecnici sono connotati da una solida base culturale a carattere scientifico e tecnologico in linea con le indicazioni dell’Unione europea (...) Tale base ha l’obiettivo di far acquisire agli studenti sia conoscenze teoriche e applicative spendibili in vari contesti di vita, di studio e di lavoro sia abilità cognitive idonee per risolvere problemi, sapersi gestire autonomamente in ambiti caratterizzati da innovazioni continue, assumere progressivamente anche responsabilità per la valutazione e il miglioramento dei risultati ottenuti
Percorsi degli Istituti Tecnici I percorsi degli istituti tecnici sono connotati da una solida base culturale a carattere scientifico e tecnologico in linea con le indicazioni dell’Unione europea (...) Tale base ha l’obiettivo di far acquisire agli studenti sia conoscenze teoriche e applicative spendibili in vari contesti di vita, di studio e di lavoro sia abilità cognitive idonee per risolvere problemi, sapersi gestire autonomamente in ambiti caratterizzati da innovazioni continue, assumere progressivamente anche responsabilità per la valutazione e il miglioramento dei risultati ottenuti VALORE FORMATIVO
Metodologie I percorsi dei nuovi istituti tecnici danno, inoltre, ampio spazio alle metodologie finalizzate a sviluppare le competenze degli allievi attraverso la didattica di laboratorio e le esperienze in contesti applicativi, l’analisi e la soluzione di problemi ispirati a situazioni reali, il lavoro per progetti
L’identità degli Istituti Tecnici “Agli istituti tecnici è affidato il compito di far acquisire agli studenti non solo le competenze necessarie al mondo del lavoro e delle professioni, ma anche le capacità di comprensione e applicazione delle innovazioni che lo sviluppo della scienza e della tecnica continuamente produce gli istituti tecnici sono chiamati ad operare scelte orientate permanentemente al cambiamento e, allo stesso tempo, a favorire attitudini all’auto-apprendimento, al lavoro di gruppo e alla formazione continua. Nei loro percorsi non può mancare, quindi, una riflessione sulla scienza, le sue conquiste e i suoi limiti, la sua evoluzione storica, il suo metodo in rapporto alle tecnologie…
L’identità degli Istituti Tecnici In sintesi, occorre valorizzare il metodo scientifico e il sapere tecnologico, che abituano al rigore, all’onestà intellettuale, alla libertà di pensiero, alla creatività, alla collaborazione, in quanto valori fondamentali per la costruzione di una società aperta e democratica. Valori che, insieme ai principi ispiratori della Costituzione, stanno alla base della convivenza civile”
Le 8 competenze chiave Le competenze chiave per l'apprendimento permanente sono una combinazione di conoscenze, abilità e attitudini appropriate al contesto. In particolare, sono necessarie per la realizzazione e lo sviluppo personali, la cittadinanza attiva, l’inclusione sociale e l’occupazione. Le competenze chiave sono essenziali in una società della conoscenza e assicurano maggior flessibilità ai lavoratori per adattarsi in modo più rapido a un mondo in continuo mutamento e sempre più interconnesso. Inoltre, tali competenze sono un fattore di primaria importanza per l’innovazione, la produttività e la competitività.
Le 8 competenze chiave • la comunicazione nella madrelingua; • la comunicazione in lingue straniere; • la competenza matematica e le competenze di base in campo scientifico e tecnologico; • la competenza digitale; • imparare ad imparare; • le competenze sociali e civiche; • senso di iniziativa e di imprenditorialità; • consapevolezza ed espressione culturali.
Le competenze matematico-scientifiche contribuiscono alla comprensione critica della dimensione teorico-culturale dei saperi e delle conoscenze proprie del pensiero matematico e scientifico. Lo studio della Matematica permette di utilizzare linguaggi specifici per la rappresentazione e soluzione di problemi scientifici, economici e tecnologici e stimola gli studenti a individuare le interconnessioni tra i saperi in quanto permette di riconoscere i momenti significativi nella storia del pensiero matematico. Il possesso degli strumenti matematici, statistici e del calcolo delle probabilità consente una piena comprensione delle discipline scientifiche e l’operatività nel campo delle scienze applicate
Complementi di matematica con contenuti specifici per ogni indirizzo, integra opportunamente la cultura matematica di base comune a tutti gli indirizzi. Tale disciplina rappresenta un anello di congiunzione tra la cultura matematica generale e quella scientifica, tecnologica e professionale di ogni indirizzo. Infatti, numerose applicazioni tecnologiche sarebbero affrontate in maniera acritica e senza consapevolezza se non ci fossero alla base sicure conoscenze e abilità matematiche. La programmazione delle attività didattiche di “Matematica” e di “Complementi di matematica” deve risultare pienamente integrata con le discipline di indirizzo, in modo che gli studenti possano disporre di un continuo ed efficace riferimento teorico durante le varie applicazioni professionali
Matematica e complementi Direttiva n. 4 del 16 gennaio 2012 - Linee guida per il secondo biennio e quinto anno per i percorsi degli istituti tecnici a norma dell’articolo 8, comma 6, del D.P.R. 15 marzo 2010, n. 88 Dalle Indicazioni per i Licei: “Ferma restando l’importanza dell’acquisizione delle tecniche, saranno evitate dispersioni in tecnicismi ripetitivi o casistiche sterili che non contribuiscono in modo significativo alla comprensione dei problemi. L’indicazione principale è: pochi concetti e metodi fondamentali, acquisiti in profondità Complementi di Matematica Matematica
La mathematical literacy e l’educazione matematica Il (i) framework di riferimento
Il KOM Project Il discorso sulle competenze matematiche nasce in Danimarca per fronteggiare alcuni problemi educativi. Niss dirige il KOM (competenze e apprendimento della matematica) Project 2000 a cui farà riferimento in seguito il framework di matematica di OCSE-PISA ] M. Niss
The justification problem Supportare l’idea della “matematica per tutti” – che è un indirizzo predominante sin dalla Seconda Guerra Mondiale - spiegando il senso della matematica per tutti Individuale Sociale Giustificare perché debba fare matematica fino alla fine della secondaria superiore Giustificare perché la società debba investire in questo insegnamento per tutti
The implementation problem Legato alla questione della formazione e dell’estrazione degli insegnanti di matematica Niss sottolinea il diverso background degli insegnanti di matematica di livelli scolari diversi, individuando problemi da una parte sulla formazione disciplinare, dall’altra su quella pedagogico-didattica Il diverso background accentua The transition problem
The transition problem Lo studente (passando per esempio dalle medie alle superiori) passa da una istituzione con un tipo di cultura, ad una con un diverso tipo di cultura, il che rappresenta una marcata discontinuità nel processo di transizione da un livello scolare ad un altro In particolare la matematica è trattata così differentemente che è difficile parlare dello stesso soggetto, anche se mantiene lo stesso nome
In particolare la matematica è trattata così differentemente che è difficile parlare dello stesso soggetto, anche se mantiene lo stesso nome Questo evidenzia Lo studente (passando per esempio dalle medie alle superiori) passa da una istituzione con un tipo di cultura, ad una con un diverso tipo di cultura, il che rappresenta una marcata discontinuità nel processo di transizione da un livello scolare ad un altro The identity and coherence problem Importanza della progettazione di curricula verticali
In particolare la matematica è trattata così differentemente che è difficile parlare dello stesso soggetto, anche se mantiene lo stesso nome Questo evidenzia È difficile (per non dire impossibile) perseguire, identificare, caratterizzare e misurare una progressione nella padronanza della matematica da parte dello studente se non condividiamo cosa intendiamo per matematica e per sua padronanza The identity and coherence problem The assessment problem
Mathematical literacy La domanda chiave a cui rispondere è dunque: Cosa significa padroneggiare la matematica? Niss fa il parallelo con la padronanza del linguaggio (literacy) ed introduce il termine mathematical literacy ] M. Niss
Mathematical literacy Il parallelo con la padronanza del linguaggio Le principali componenti della literacy sono le stesse per il bambino di prima elementare e per il professore di letteratura Padroneggiare un linguaggio richiede certamente conoscenze e abilità relative all’ortografia, il vocabolario, la grammatica … ma certamente non può essere ridotto solo a questo
Mathematical literacy Prendendo spunto da questo parallelo Niss definisce la competenza matematica La competenza matematica (mathematical literacy) è l’abilità di capire, giudicare, fare e usare matematica in una varietà di contesti e situazioni (intra ed extra matematici) in cui la matematica gioca o potrebbe giocare un ruolo Prerequisiti necessari ma non sufficienti per avere competenza matematica sono un certo numero di conoscenze di base e abilità tecniche
Niss ne identifica 8 suddivise in due macro-gruppi La competenza matematica è la risultante di tante singole competenze (mathematical competency) 1. Porre domande e rispondere in e con la matematica 1.1 Pensare matematicamente 1.2 Problem posing and solving 1.3 Modellizzare 1.4 Ragionare matematicamente
Niss ne identifica 8 suddivise in due macro-gruppi La competenza matematica è la risultante di tante singole competenze (mathematical competency) 2. Padroneggiare il linguaggio e gli strumenti matematici Queste 8 competenze sono trasversali a contenuti e livelli scolari e possono essere padroneggiate a diversi livelli 2.1 Rappresentare entità matematiche (oggetti e situazioni) 2.2 Maneggiare simboli e formalismo matematico 2.3 Comunicare in, con e riguardo la matematica 2.4 Fare uso di sussidi e strumenti
Dal KOM Project al PISA • PISA è un’indagine internazionale promossa dall’OCSE (Organizzazione per la Cooperazione e lo Sviluppo Economico) per accertare, con periodicità triennale, le competenze dei quindicenni scolarizzati nei tre ambiti: lettura, matematica e scienze • Ha l’obiettivo generale di verificare in che misura i quindicenni scolarizzati abbiano acquisito alcune competenze giudicate essenziali per svolgere un ruolo di cittadinanza attiva e per essere in grado di continuare ad apprendere per tutta la vita • Non si focalizza sulla padronanza di contenuti curricolari, ma sulla misura in cui gli studenti sono in grado di utilizzare competenze acquisite durante gli anni di scuola
La mathematical literacy in PISA La capacità di un individuo di identificare e comprendere il ruolo che la matematica gioca nel mondo reale, di operare valutazioni fondate di utilizzare la matematica e confrontarsi con essa in modi che rispondono alle esigenze della vita di quell’individuo in quanto cittadino che esercita un ruolo costruttivo, impegnato e basato sulla riflessione PISA 2003
La mathematical literacy in PISA La capacità di un individuo di formulare, utilizzare e interpretare la matematica in una varietà di contesti. Include la capacità di ragionare matematicamente e di usare concetti, procedure, fatti e strumenti della matematica per descrivere, spiegare e predire fenomeni. Aiuta gli individui a riconoscere il ruolo che la matematica ha nel mondo e a formulare giudizi e decisioni ben fondati, come richiesto a cittadini costruttivi, impegnati e riflessivi PISA 2012
Dal KOM Project al PISA 2003 Pensare matematicamente Pensare e ragionare mat. Problem posing and solving Problem posing and solving Modellizzare Modellizzare Ragionare matematicamente Argomentare Rappresentare Rappresentare Maneggiare simboli e formalismo matematico Maneggiare simboli e formalismo matematico Comunicare in, con e riguardo la matematica Comunicare in, con e riguardo la matematica Fare uso di sussidi e strumenti Fare uso di sussidi e strumenti
Osservazioni sulle mathematical competencies Tutte le competenze matematiche: • hanno a che fare con processi fisici o mentali, attività e comportamenti: in altre parole il focus è su cosa l’individuo può fare! • hanno una natura duale: analitica e produttiva (sapere/capire e saper fare) • sono trasversali a contenuti e livelli scolari (allo stesso tempo sono caratteristiche specificatamente dell’ambito matematico) • È sottolineato il fatto che siano spendibili in contesti diversi
Il ciclo di modellizzazione Descrive le fasi attraverso le quali gli individui risolvono problemi in contesto ed è dunque esemplificativo di cosa - in PISA - si intenda in pratica per mathetical literacy
Il framework di PISA 2012 Definisce Identifica i tre processi fondamentali che dunque caratterizzano la mathematical literacy UTILIZZARE FORMULARE INTERPRETARE
Il framework di PISA 2012 Individua 7 competenze sottostanti ai 3 processi (accorpando ragionamento con argomentare) PISA 2012 PISA costruisce 6 livelli di acquisizione delle competenze (livelli che sono usati anche per classificare la difficoltà dell’item): il livello 3 corrisponde al livello medio, sotto il livello 2 si parla di analfabetismo matematico
Il framework di PISA 2012 Individua 7 competenze sottostanti ai 3 processi (accorpando ragionamento con argomentare) PISA 2012 Individua i 4 ambiti di contenuto rilevanti per il riconoscimento delle competenze matematiche dei 15enni Quantità Cambiamenti e relazioni Spazio e forma Incertezza e dati Indicazioni 2010 Geometria Aritmetica e algebra Relazioni e funzioni Dati e previsioni
Il framework di PISA 2012 Individua 7 competenze sottostanti ai 3 processi (accorpando ragionamento con argomentare) PISA 2012 Novità significativa: per la prima volta nei quesiti di PISA 2012 l’uso di una calcolatrice (sempre permesso) può essere molto utile e tale competenza entra dunque nella valutazione della literacy matematica Individua i 4 ambiti di contenuto rilevanti per il riconoscimento delle competenze matematiche dei 15enni Individua 4 contesti distinti di interesse (a seconda dei quali possono variare rappresentazioni e strategie matematiche) Personale Occupazionale Sociale Scientifico
Da dove è partito (quasi) tutto I risultati degli studenti italiani nelle prove di matematica di Pisa2003
Esempi PISA2003 Tasso di cambio Ambito: Quantità Livello: 1 Omissioni: Italia 11.3% OCSE 6.5% Risposte corrette: Italia 70.0% OCSE 78.7% Come la classifichereste? (ambito, livello) Che percentuale di risposte corrette prevedete? E di omissioni?
Esempi PISA2003 Tasso di cambio Come la classifichereste? (livello) Che percentuale di risposte corrette prevedete? E di omissioni? Ambito: Quantità Livello: 2 Omissioni: Italia 14.6% OCSE 8.7% Risposte corrette: Italia 63.5% OCSE 72.6%
Esempi PISA2003 Tasso di cambio Come la classifichereste? (livello) Che percentuale di risposte corrette prevedete? E di omissioni? Ambito: Quantità Livello: 2 Omissioni: Italia 27.9% OCSE 17.1% Risposte corrette: Italia 33.2% OCSE 39.6%
Esempi PISA2003 Scala Ambito: Spazio e forma Livello: 2 Omissioni: Italia 5.9% OCSE 0% Risposte corrette: Italia 77.6% OCSE 75.5%
Esempi PISA2003 Andatura Ambito: Cambiamento e relazioni Livello: 5 Omissioni: Italia 40.8% OCSE 20.7% Risposte corrette: Italia 15.8% OCSE 35.9% Come lo classifichereste? Ambito? Livello? Percentuale di Risposte corrette? Omissioni?
Esempi PISA2003 Andatura Livello: 6 Omissioni: Italia 63.9% OCSE 38.0% Risposte completamente sbagliate: Italia 14.3% OCSE 24% Risposte completamente corrette: Italia 2.1% OCSE 7.9%
Esempi PISA2003 Caramelle colorate Ambito: Incertezza Livello: 4 Omissioni: Italia 3.1% OCSE 1.8% Risposte corrette: Italia 33.7% OCSE 49.7%
I risultati italiani di PISA2003 Hanno avuto una enorme risonanza per le criticità evidenziate Solo 3 paesi (Grecia, Turchia e Messico) su 41 con risultati peggiori Ampiamente sotto la media OCSE in tutti e quattro gli ambiti di analisi
I risultati italiani di PISA2003 Hanno avuto una enorme risonanza per le criticità evidenziate Grosso problema sulle eccellenze e drammatica questione sui livelli bassi: uno studente su tre in stato, che OCSE PISA definisce di analfabetismo matematico! Il 13% del campione italiano risulta sotto il livello 1
I risultati italiani di PISA2003 Hanno avuto una enorme risonanza per le criticità evidenziate Divario enorme tra zone diverse: problema di pari opportunità nell’educazione e anche di sviluppo socio-economico Il Centro comprende Toscana, Lazio, Marche, Umbria
I risultati italiani di PISA2003 Hanno avuto una enorme risonanza per le criticità evidenziate Anche il divario così enorme tra i differenti tipi di scuola evidenzia un chiaro problema di pari opportunità se si reputa che alcune competenze di base matematiche siano necessarie per una cittadinanza attiva
I risultati italiani di PISA2003 Omissioni In PISA le omissioni sono quelle domande a cui lo studente non ha risposto pur rispondendo alle domande successive. Si presume che lo studente ometta di rispondere quando non conosce la risposta, dunque l’omissione viene considerata errore Il numero di omissioni nei quesiti a risposta aperta segnala grossi problemi sulla competenza di comunicazione in matematica L’Italia è uno dei Paesi con il più alto tasso di omissioni Nelle domande aperte a risposta articolata la percentuale media di omissioni è del 38%!!! (Media OCSE 25%)