1 / 17

Lineární rovnice

Lineární rovnice. Druhy řešení. Všechny možnosti řešení si představíme a především prakticky ukážeme na konkrétních příkladech. Pokusíme se tedy vyřešit následující lineární rovnice a rozebereme výsledky, ke kterým dospějeme:. Příklad č. 1:.

Télécharger la présentation

Lineární rovnice

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lineární rovnice Druhy řešení

  2. Všechny možnosti řešení si představíme a především prakticky ukážeme na konkrétních příkladech. Pokusíme se tedy vyřešit následující lineární rovnice a rozebereme výsledky, ke kterým dospějeme:

  3. Příklad č. 1: Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám.

  4. 3 __ y = 4 5 __ y = - 2 Máme na světě první typ možného řešení. x = -2 Jinými slovy: x = „reálné číslo“ Takový výsledek znamená, že rovnice má právě jedno řešení. x = 20 x = 5 y = 1 -2,7 = x y = -5 4 = a

  5. Zkouška příkladu č. 1: Ověříme správnost řešení dosazením čísla -2. Po dosazení čísla -2 za neznámou nastává rovnost. Číslo -2 je tedy řešením dané rovnice!

  6. Zkusíme dosadit něco jiného, např. číslo 2. Levá strana se nerovná pravé. -5 se 11 nerovná! Po dosazení čísla 2 za neznámou rovnost neplatí. Číslo 2 tedy nemůže být řešením dané rovnice!

  7. Příklad č. 2: Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. 0 se -1 nerovná! Nerovnají se tedy ani levá a pravá strana rovnice. Co to znamená?

  8. 3 __ 0 ≠ 4 5 __ 1 ≠ - 2 Máme na světě druhý typ možného řešení. 0.x = -1 0 = -1 Jinými slovy: nepravda, nepravdivý výrok, nerovnost -5 ≠ 5 Takový výsledek znamená, že rovnice nemá řešení. 2 ≠ 20 Neexistuje žádné číslo, po jehož dosazení za neznámou do dané rovnice by nastala rovnost levé a pravé strany. -2,7 ≠ 9 4 ≠ 0,4 14 ≠ 1 -0,5 ≠ -5

  9. Příklad č. 3: Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. 0 se rovná 0! Co to z hlediska řešení rovnice znamená?

  10. 5 5 __ __ = 2 2 Máme na světě třetí typ možného řešení. 0.x = 0 0 = 0 Jinými slovy: pravda, pravdivý výrok, rovnost 5 = 5 45 = 45 Takový výsledek znamená, že rovnice má nekonečně mnoho řešení. 20 = 20 Rovnost levé a pravé strany rovnice nastane, dosadíme-li do rovnice za neznámou jakékoliv číslo. -2,7 = -2,7 -0,5 = -0,5 1 = 1 0,4 = 0,4

  11. Ověření příkladu č. 3: Do rovnice můžeme dosadit jakékoliv číslo. Zkusme třeba číslo 1. Dosazením jsme ověřili, že číslo 1 je řešením dané rovnice.(Po dosazení za neznámou do zadané rovnice, nastává rovnost levé a pravé strany – rovnost platí.)

  12. Ověření příkladu č. 3: Zkusíme dosadit například ještě číslo -1. Dosazením jsme ověřili, že i číslo -1 je řešením dané rovnice.(Po dosazení za neznámou do zadané rovnice, nastává rovnost levé a pravé strany – rovnost platí.)

  13. Shrnutí: Existují tři druhy možných řešení lineárních rovnic.Jaké a jak je poznáme? 1. Rovnice má právě jedno řešení (jeden kořen). Existuje jediné číslo, po jehož dosazení za neznámou do dané rovnice nastane rovnost levé a pravé strany. například: x = 2 2. Rovnice nemá žádné řešení. Neexistuje žádné číslo, po jehož dosazení za neznámou do dané rovnice by nastala rovnost levé a pravé strany. například: 0 = 2 3. Rovnice má nekonečně mnoho řešení. Existuje nekonečně mnoho čísel (všechna čísla), po jejichž dosazení za neznámou do dané rovnice nastane rovnost levé a pravé strany. například: 2 = 2

  14. A teď si to zkuste sami. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. Rovnice nemá řešení.

  15. A ještě jednou. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. Rovnice má právě jedno řešení.

  16. Zkouškou ověříme správnost našich výpočtů. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. Zkouškou jsme ověřili, že řešením je skutečně číslo 5.

  17. A naposled. Řešte, a jen pokud si nebudete vědět rady, klikněte. Pomohu vám. Rovnice má nekonečně mnoho řešení.

More Related