1 / 28

Die holozäne Temperatur- und Niederschlagsvariabilität in Europa

Die holozäne Temperatur- und Niederschlagsvariabilität in Europa. (Quelle: NASA). Programm. Motivation Grundlagen Stand des Wissens Holozäne Temperaturvariabilität Europas Holozäne Niederschlagsvariabilität Europas 4. Mögliche Ursachen der Variabilität. 1. Motivation.

dudley
Télécharger la présentation

Die holozäne Temperatur- und Niederschlagsvariabilität in Europa

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Die holozäne Temperatur- und Niederschlagsvariabilität in Europa (Quelle: NASA)

  2. Programm • Motivation • Grundlagen • Stand des Wissens • Holozäne Temperaturvariabilität Europas • Holozäne Niederschlagsvariabilität Europas • 4. Mögliche Ursachen der Variabilität

  3. 1. Motivation • Globale Erwärmung: Überlagerung vom anthropogenen Treibhauseffekt und natürlicher Variabilität (zB Änderung der Sonnenaktivität) • Trennung dieser Effekte um menschlichen Anteil dieser Erwärmung zu bestimmen • im vorindustriellen Holozän natürliche Einflüsse dominant • holozäne Temperatur- und Niederschlagsrekonstruktion liefert Abschätzung über • Größenordnung • Geschwindigkeit • Häufigkeit • (Ir-)Reularität von natürlichen Klimavariationen einer Warmzeit • Schluss auf anthropogenen Anteil

  4. 2. GrundlagenTemperatur • Maß für die mittlere kinetische Energie der Luftmoleküle • Definition der World Meteorological Organization (WMO) für die Tagesmitteltemperatur: • Messung in weißen Klimahütten, die: • sich 2m über einer Grasfläche befinden • mindestens 10m vom nächsten Baum entfernt sind • ungehindert vom Wind getroffen werden können Klimahütte (Quelle: Heribert Fleer)

  5. Niederschlag Niederschlag: Regen, Schnee, Hagel, aber auch Nebel und Tau Niederschlagsmenge: Höhe der Wasserschicht, die sich durch Niederschlag auf ebener Fläche gebildet hätte • Messstandards: • Regenmesser mit 200qcm Auffangöffnung, an • windarmer aber freier Stelle • Probleme: • keine zufriedenstellende Methode zur quantitativen • Erfassung • Frage der Übertragbarkeit auf die Umgebung • Ablenkung der Niederschlagspartikeln bei Starkregen- • ereignissen durch Messaufbau • Schnee, Hagel, Tau, Nebel besonders schlecht zu • messen, nur in gesonderten Geräten (unterschiedliche • Messfehler!) Regenmesser (Quelle: Hellmann)

  6. Zusammenhang zwischen Niederschlag und Temperatur - Transport latenter Wärme • mehr Niederschlag höhere Temperatur • aber: Umkehrschluss • höhere Temperatur gesteigerte Verdunstung mehr Niederschlag • im allgemeinen noch nicht gezeigt Wärmeaufnahme Wärmeabgabe Verdampfungsenthalpie von Wasser: ~2450kJ/kg Bei 800mm Jahresnieder- schlag entspricht das: • ~2GJ/(qm*y) • ~ 60W/qm

  7. Messreihen Anforderungen: • Standort der Messstationen weitab von urbanen Gebieten um wechselnden anthropogenen Einfluss zu vermeiden Stichwort Stadtklima: • homogene Messverfahren wegen Vergleichbarkeit Heterogenität zB durch: • wünschenswert: hohe räumliche Dichte an Messstationen • höhere Temperatur • niedrigere Luftfeuchte • länger anhaltender Starkregen (viele Kondensationskeime) • Verwendung der Messergebnisse verschiedener Stationen von verschiedenen Perioden als eine Messreihe • Ortsänderung von Stationen • Austausch von Messinstrumenten

  8. Räumliche Temperaturvariabilität in Europa (Quelle: Sweklim) Jahresmitteltemperaturen gemittelt über die WMO-Standardperiode 1961-1990

  9. Räumliche Jahresniederschlagsvariabilität in Europa (Quelle: IIASA) Jahresniederschläge gemittelt über die WMO-Standardperiode 1961-1990

  10. Verlängerung der Messreihen • verlässliche Messreihen reichen nur etwa 100-150 Jahre zurück • „Verlängerung“ der Messreihen durch Proxies • Kalibrierung der Proxies anhand der Messreihen) • Rekonstruktion von T&P aus (Multi-)Proxydaten Mögliche Paläoarchive: • Eisbohrkerne • Baumringdicken • Baumgrenzen • Sedimente • Grundwasser • Stalagmiten • Seespiegel und viele mehr … Eisbohrkern (Quelle: L. Augustin) Sedimentkerne (Quelle: Pier der Wissenschaft)

  11. 3. Stand des WissensHolozäne Temperaturvariabilität in EuropaHolozäne Temperaturvariabilität der Nordhemisphäre

  12. Vergleich mit den Temperaturvariationen vor dem Holozän wärmer kälter • weit geringere Temperaturschwankungen im Holozän als in der Zeit davor • hohe Anforderung an zeitliche Auflösung von Proxy-Daten

  13. Gemittelte Anomalien europäischer Temperaturaufzeichnungen (Quelle: Brohan et al.) • Hälfte des Anstiegs von 1890-1950 möglicherweise durch Verstädterung • Trends in Zusammenhang mit Variabilität • regionaler Zirkulationsmuster der oberen Atmosphäre • des europäischen Luftdrucks • der North Atlantic Oscillation

  14. Temperaturtrend pro Dekade gemittelt über die Periode von 1851-1991, auf Monate aufgeschlüsselt (Quelle: Balling et al.)

  15. Holozäne Niederschlagsvariabilität in Europa Baumringe (Schweiz) Eisbohrkern (Grönland) Seeleveländerungen (Polen) Pollen aus Sedimenten (österr. und schweiz. Alpen) Sedimentationraten (Deutschland) 2000BP Relative feuchte Zeiträume (in grau): • 3000 - 2500 BP • 3600 - 3400 BP • 4100 - 3900 BP • 5400 - 4800 BP • 6400 - 6000 BP • 7500 - 7000 BP • 8200 - 7900 BP • 9500 - 8600 BP • 10500-13000BP 11000BP (Quelle: Haas et al. und Zolitschka 1998)

  16. Vergleich mit einer anderen Niederschlagsstudie Phasen höhere Seespiegel in Mitteleuropa Trockenphasen in Südspanien von Eisbergen transportierter Gletscherschutt im N-Atlantik Winterniederschlag in Westnorwegen 0BP 11000BP (Quelle: Magny et al.) kalt/trocken warm/feucht nach Norden nach Süden

  17. Niederschlagstrends in holozänen Kältephasen Grenzen des niederschlagsreicheren Bereichs während schwächerer Kältephasen Feuchterer Bereich beim 8,2k Event (Quelle: Magny et al.) • Variation der niederschlagsreichen Zone wahrscheinlich Ergebnis von wechselnder Stärke der Westlagen (Änderungen im Temperaturgradienten zwischen hohen und niederen Breiten)

  18. Flächengemittelte Niederschlagsaufzeichnungen Deutschlands (Quelle: Schönwiese und Trömel)

  19. 4. Ursachen der Klimaschwankungen im Holozän

  20. Variabilität der Sonnenaktivität • Zusammenhang zwischen Temperaturschwankungen und Variabilität der • Sonnenaktivität • Effekte der Variationen alleine zu schwach • Verstärkung dieser Effekte durch Klimasystem

  21. Thermohaline Zirkulation (THZ)Strahlungsbilanz • Strahlungsbilanz erfordert Wärmetransport nach Norden, dort Wärmeabgabe an die Atmosphäre • Wärmetransport von 1,2 PW im Atlantik nach Norden (deutsche Kraftwerke: 122 GW) • Massenbilanz erfordert Rückströmung nach Süden Tiefenwasserbildung (Quelle: Bundesministerium für Umwelt)

  22. Tiefenwasserbildung im Nordatlantik (Quelle: Rick Williams) • ozeanische Zirkulation von Erwärmung der Atmosphäre beeinflusst • Störung der Dichtezunahme hat Abnahme der Zirkulation zur Folge • Stärke der THZ im Nordatlantik hat an Stärke verloren: • 1957: 20Sv • 2004: 14Sv

  23. Hysteresisverhalten der THZ • mehr oder minder Starke Zirkulation • Zirkulation hört komplett auf • Verschiedene Gleichgewichtszustände der THZ: • werden gewisse Grenzwerte überschritten, kann System sprunghaft in • anderen Zustand übergehen • beim 2-4fachen der vorindustriellen Konzentration an CO2 wird die THZ • komplett aufhören, Übergang möglicherweise irreversibel Aber: Nicht nur Endkonzentration entscheidender Parameter bezüglich der Irreversibilität, sondern auch die Rate des Anstiegs. Atmosphäre Atmosphäre erwärmte Wasserschicht kühleres Wasser (Quelle: T.F. Stocker)

  24. Mögliche Störungen der THZ im Holozän • 8,2ky Event: • Aufgestautes Schmelzwasser des restlichen kan. Eisschildes fließt in den NA ab • „leichtes“ Süßwasser verhindert Tiefenwasserbildung • Ende der THZ für mehrere hundert Jahre • 6ky Coldevent: • nicht durch Schmelzwasser erklärbar, Tiefensedimentkerne aber weisen auf verminderte Tiefenwasserbildung hin • Little Ice Age ?

  25. North Atlantic Oscillation (NAO) (Quelle: Visbeck&Cullen, NOAA) NAO+ NAO- • stark neg. SST Anomalien vor Grönland und positive bei den Azoren • starkes Islandtief und Azorenhoch • positive SST Anomalien vor Grönland negative bei den Azoren • Druckzentren nicht voll entwickelt

  26. NAO - Index NAO-Index = Differenz der normierten Luftdruckanomalien von Islandtief und Azorenhoch gemittelt über die Wintermonate (DJF)

  27. NAO in der Vergangenheit

  28. Zusammenfassung • Holozän Zeitraum mit langzeitigen Temperaturschwankungen von ungefähr bis zu 1°C (viel geringer als in Kaltzeiten) • Temperaturamplituden der teilweise noch strittig, Trends einigermaßen sicher • über Niederschlag meist eher qualitative Aussagen möglich • Antrieb der Variabilität: • genaue Ursachen noch unklar (Wechselwirkungen der verschiedenen Klimaantriebe) • Ansatz: Änderungen der solaren Aktivität, verstärkt durch terrestrische Zirkulationen (wohl am zutreffensten, trotzdem Vereinfachung) • aber auch: Vulkanausbrüche, Wechsel in der Flächennutzung… • viele unterschiedliche Meinungen und Ansätze zu den Schwankungen • Ziel noch nicht erreicht, den anthropogenen Treibhauseffekt von den Effekten natürlicher Variabilität zu trennen • Zukunft ? (NAO, THC, Flächennutzung…)

More Related