1 / 13

Step by Step Instructions for Solving a Limited Excess Reagent Stoichiometry Problem.

Step by Step Instructions for Solving a Limited Excess Reagent Stoichiometry Problem. By: Joseph Wheeler. How many grams of Sodium Sulfide is produced when 9.36 grams of Sodium is reacted with 17.3 grams of Sulfur? Which is the limiting reagent? Which is the excess reagent?

Télécharger la présentation

Step by Step Instructions for Solving a Limited Excess Reagent Stoichiometry Problem.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Step by Step Instructions for Solving a Limited Excess Reagent Stoichiometry Problem. By: Joseph Wheeler

  2. How many grams of Sodium Sulfide is produced when 9.36 grams of Sodium is reacted with 17.3 grams of Sulfur? Which is the limiting reagent? Which is the excess reagent? How much excess will there be?

  3. Step 1. Write a complete and balanced chemical equation. 2Na + S Na2S

  4. Step 2. Draw a column after each chemical. 2Na + S Na2S

  5. Step 3. Write the given amounts into the correct columns. 2Na + S Na2S 9.36g 17.3g

  6. Step 4. Convert the given amounts into moles. 2Na + S Na2S (9.36g/1) x (m/22.99g) m = 0.407 (17.3g/1) x (m/32.066g) m = 0.504

  7. Step 5a. In each of the other columns write moles of given x a fraction. 2Na + S Na2S (9.36g/1) x (m/22.99g) (0.407m/1) x (0.407m/1) x m = 0.407 (0.540m/1) x (17.3g/1) x (m/32.066g) (0.540m/1) x m = 0.540

  8. Step 5b. The numerator of the fraction is the coefficient of that column. 2Na + S Na2S (9.36g/1) x (m/22.99g) (0.407m/1) x (1/ (0.407m/1) x (1/ m = 0.407 (0.540m/1) x (2/ (17.3g/1) x (m/32.066g) (0.540m/1) x (1/ m = 0.540

  9. Step 5c. The denominator of the fraction is the coefficient of the given column. 2Na + S Na2S (9.36g/1) x (m/22.99g) (0.407m/1) x (1/2) (0.407m/1) x (1/2) m = 0.407 (0.540m/1) x (2/1) (17.3g/1) x (m/32.066g) (0.540m/1) x (1/1) m = 0.540

  10. Step 5d. Do the math and label as moles. 2Na + S Na2S (9.36g/1) x (m/22.99g) (0.407m/1) x (1/2) (0.407m/1) x (1/2) m = 0.407 m = 0.204 m = 0.204 (0.540m/1) x (2/1) (17.3g/1) x (m/32.066g) (0.540m/1) x (1/1) m = 1.08 m = 0.540 m = 0.540

  11. Step 6. Convert all moles to grams. 2Na + S Na2S (9.36g/1) x (m/22.99g) (0.407m/1) x (1/2) (0.407m/1) x (1/2) m = 0.407 m = 0.204 m = 0.204 (0.204m/1) x (32.066g/m) (0.204m/1) x (78.046g/m) g = 6.54 g = 15.9 (0.540m/1) x (2/1) (17.3g/1) x (m/32.066g) (0.540m/1) x (1/1) m = 1.08 m = 0.540 m = 0.540 (1.08m/1) x (22.99g/m) (0.540m/1) x 78.046g/m) g = 24.8 g = 42.1

  12. Step 7. Verify the law of conservation of mass. 2Na + S Na2S (9.36g/1) x (m/22.99g) (0.407m/1) x (1/2) (0.407m/1) x (1/2) m = 0.407 m = 0.204 m = 0.204 (0.204m/1) x (32.066g/m) (0.204m/1) x (78.046g/m) g = 6.54 g = 15.9 0.407g + 6.54g = 15.9 (0.540m/1) x (2/1) (17.3g/1) x (m/32.066g) (0.540m/1) x (1/1) m = 1.08 m = 0.540 m = 0.540 (1.08m/1) x (22.99g/m) (0.540m/1) x 78.046g/m) g = 24.8 g = 42.1 24.8g + 17.3g = 42.1g

  13. 15.9 grams of Sodium Sulfide is produced when 9.36 grams of Sodium reacts with 17.3 grams of Sulfur. The limiting reagent is Na. The excess reagent is S. There is 10.8 grams of excess Sulfur. 17.3 - 6.54 = 10.8

More Related