110 likes | 241 Vues
This document presents various chemical reactions alongside their corresponding enthalpy changes (ΔH). Key reactions include the oxidation of nitrogen oxides, combustion of hydrocarbons, and formation reactions of elemental substances. Enthalpy values are provided to highlight energy exchanges during the reactions. Useful hints for manipulating reactions and calculating molar ΔH values are also outlined, aiding in understanding thermodynamic principles in chemistry.
E N D
Page 208, Question #1 • NO2(g) NO(g) + ½ O2(g) ΔH = +57.0 kJ • C(s) + 2H2(g) CH4(g)ΔH = -74.7 kJ • C12H22O11(s)+12O2 12CO2 + 11H2O ΔH = -5156 kJ Hints: Multiply the second equation by 11, Multiply the third by equation by 12 The answer is also kJ/mol of reactant. For kJ/mol of CO2 ÷ by 12, for kJ/mol of H2O ÷ 12 • H2SO4 H2O + SO2 + ½ O2 ΔH = +275.4 kJ • 2 H2S + 3O2 2H2O + 2 SO2ΔH = -1036.0 kJ Hint: The first and third reaction are multiplied by 2 If you want to calculate the ΔH per mole of product: Divide the whole equation by 2
Page 208, #2 2CO2 • C6H12O6 + 6O2 6CO2 + 6H2O ΔH=-2803.1kJ • C2H5OH + 3O2 2CO2 + 3H2O ΔH=-1366.8kJ • 4CO2 + 6H2O 2C2H5OH+ 6O2ΔH=+2733.6kJ • C6H12O6 2C2H5OH+ 2CO2 ΔH= -69.5 kJ The overall heat of the reaction is 69.5 kJ of energy released, but that is for the formation of 2 moles of ethanol. For a single mole, divide by 2 to give: Answer: molar heat of reaction of ethanol is 34.8 kJ/mol
Page 208, #3 • 2 Al + 3/2O2 Al2O3ΔH= -1675.7kJ • Fe2O3 2Fe + 3/2O2ΔH= +824.2kJ • Fe2O3 + 2Al Al2O3 + 2Fe Target (note: no manipulation of the equations was needed before addition this time) Fe2O3 + 2Al Al2O3 + 2 Fe ΔH=-851.5kJ
Page 208, #4 • The equation given is for the formation of two moles of hydrogen atoms from normal molecular hydrogen: H2(g) 2H(g) ΔH=+434.6 kJ • The standard molar heat of formation would be found by dividing by 2, to give one mole of H atoms: ½ H2 H ΔH=+217.3 kJ/mol Answer: The molar heat of formation of atomic hydrogen is 217.3 kJ/mol.
Page 208, #5 • a) 4 simple reactions • b) 3 intermediates • c) 4 activated complexes • d) 70 kJ • e) 150 kJ • f) +50 kJ • g) -40 kJ • h) endothermic • i) -10 kJ • j) exothermic 2 Simple Reaction1 Simple Reaction 2 Simple Reaction 3 Simple Reaction 4 3 1 4 1 3 2
Page 209, #6a • Look up standard enthalpy of formation on page 418, then work out formation equation • ½N2+ O2 NO2ΔH=+33.2 • ½N2 + ½O2 NOΔH=+90.2 • NO + ½O2NO2 Target ½ O2 NO ½ N2 + ½ O2 ΔH=–90.2 NO + ½ O2 NO2ΔH=–57.0
Page 209, #6b • Look up standard enthalpy of formation on page 418, then work out formation equation • C + O2 CO2ΔH=-393.5 • C+ ½O2 NOΔH=-110.5 • CO + ½O2CO2 Target ½ O2 R: CO C+ ½ O2 ΔH=+110.5 CO + ½ O2 CO2ΔH=–283
Page 209, #7 • C2H2 + 5/2 O2 2 CO2 + H2O -1299.6 • C + O2 CO2 -393.5 • H2 + ½ O2 H2O -285.8 • 2 C + H2 C2H2 Target! R: 2 CO2 + H2O C2H2 + 5/2 O2 +1299.6 2x: 2C + 2O2 2CO2 -787.0 5/2 same as 2 ½ 2 C + H2+ 2 ½ O2 C2H2+2 ½ O2 +226.8
Page 208, #9 Rewrite the equations using ΔH notation • CO + H2 H2O + C -130 kJ • C + O2 CO2 -393.5 kJ • H2O H2 + ½O2 +241.8 • 3C + 4H2 C3H8-104.7 • CO + ½ O2 CO2 -283 • C3H8 + 5O2 3 CO2 + 4 H2O Target Eliminate the unnecessary equations (equations 1 and 5) x3: 3C + 3O2 3CO2 -1180.5 Rx4: 4H2+ 2O2 4H2O -967.2 R: C3H8 3C + 4H2+104.7 Add: C3H8 + 5O2 3 CO2 + 4 H2O -2043.7