1 / 44

Chapter 2. Representation of signals and systems

g(t) =. Chapter 2. Representation of signals and systems. 2.1 Introduction Deterministic signals : A class of signals where waveforms are defined exactly as function of time . 2.2 F.T. 1) Let g(t) = non-periodic deterministic signal F T of g(t)  inverse F.T. 

finnea
Télécharger la présentation

Chapter 2. Representation of signals and systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. g(t) = Chapter 2. Representation of signals and systems • 2.1 Introduction • Deterministic signals : A class of signals where waveforms are defined exactly as function of time. • 2.2 F.T. • 1) Let g(t) = non-periodic deterministic signal • FT of g(t) •  • inverse F.T. •  • 2) To exist FT of g(t), sufficient condition (not necessary) Dirichlet’s conditions •  g(t) is single-valued, with a finite number of maxima and minima in any finite time interval •  g(t) has a finite # of discontinuities in any finite time interval •  g(t) is absolutely integrable, that is, • 3) Physical realizability  existence of F.T. • 4) All energy signal  Fourier transformable G(f) = where f = frequency

  2. 2.2 Fourier Transform • 1. Notation • t : time [sec] • f : frequency [Hertz] • w= 2pf : angular frequency [radians/sec] • 식 G(f) = F [g(t)]  • 식 g(t) = F-1[G(f)]  • F, F-1 : linear operator • 2. Continuous Spectrum • 1) Continuous Spectrum G(f) = |G(f)| exp[j(f)]  • |G(f)| : Continuous amplitude spectrum of g(t) • (f) : Continuous phase spectrum of g(t) • 2) For real-valued g(t) • G(f) = G*(f) = |G(-f)| = | G(f)| • (-f) = - (f) • Complex conjugation = conjugate symmetric • Real : y 축 대칭, symmetric • Imaginary : 원점 대칭, anti-symmetric  g(t)  G(f) 

  3. A AT -1/T 1/T 0 T/2 -T/2 • Ex1) Rectangular pulse • Def) rect(t) = 1 -1/2 < t < 1/2 • 0 |t| > 1/2 •  g(t) = A rect (t/T) •  • Def) sinc function •  •    G(f) = AT sinc (fT) •  A rect(t/T)  AT sinc (fT)  • 3) Real Symmetric  Real Symmetric • Ex2) exp(-at) u(t)  • exp(at) u(-t)  FT

  4. 2.3 Properties of the Fourier Transform • 1. Linearity (Superposition) • Let g1(t)  G1(f) and g2(t)  G2(f). • Then for all constants C1 and C2, we have • C1 g1(t) + C2 g2(t)  C1 G1(f)+ C2 G2(f) • 2. Time Scaling • Let g(t)  G(f). Then g(at)  1/|a| G(f/a) • when a=-1, g(-t)  G(-f) • 3. Duality • If g(t)  G(f), then G(t)  g(-f) • 4. Time shifting • If g(t)  G(f), then • g(t-t0)  G(f)exp(-j2pft0) • 5. Frequency shifting • If g(t)  G(f), then exp(j2pfct)g(t)  G(f-fc) • where fc is a real constant •  modulation theorem

  5. |G(f)| g(t) -fc fc T • Ex5) RF pulse • g(t) =a rect(t/T)cos(2pfct) • G(f) = AT/2 {sinc[T(f-fc)] + sinc[T(f+fc)]} • 6. Area under g(t) • Ifg(t)  G(f), then • 7. Area under G(f) • If g(t)  G(f), then • 8. Differentiation in the Time Domain • Let g(t)  G(f), and assume that the 1st derivative of g(t) is Fourier transformable. Then • n-th generalization Ex6) Gaussian pulse g(t) = exp(-pt2)  exp(-pf2)

  6. 9. Integration in the Time Domain • Let g(t)  G(f), then provided that G(0)=0, we have • 10. Conjugate Functions • If g(t)  G(f), then for a complex-valued time function g(t), • we have g*(t)  G*(-f), • when the asterisk denotes the complex conjugate operation <Corollary> g*(-t)  G*(f) • 11. Multiplication in the Time Domain • (Multiplication Theorem) • Let g1(t)  G1(f) and g2(t)  G2(f), Then g1(t)g2(t)  12. Convolution in the Time Domain (Convolution Theorem) Let g1(t)  G1(f) and g2(t)  G2(f), Then g1(t)  g2(t)  G1(f)G2(f)

  7. 2.4 Rayleigh’s Energy Theorem • 1. Rayleigh’s Energy Theorem • E = linear transform • Ex9) E = 

  8. -1/T 1/T 0 Base-band Pass-band modulation 0 fc + 1/T fc BW = 2/T BW = 1/T 2 배 차이 2.5 The inverse relationship btw time and frequency • 1. Time과 frequency 관계 • 1) linear transform of FT • 2) Time  Frequency wide  low narrow  high cannot specify arbitrary function of time and frequency. • 3)Strictly limited in time  infinite in freq. infinite in time  strictly band-limited in freq. cannot be strictly limited in both time and freq. • 2. Bandwidth • 1) def) extent of significant spectral content of the signal for signal positive frequencies • 2) strictly band-limited 경우가 아닐 경우의 definitions •  BW = Main lobe bounded by well-defined nulls

  9. Wrms  3 dB Bandwidth : of its peak value  rms(root mean square) BW (장점) mathematical evaluation (단점) not easily measurable in lab • 3. Time-Bandwidth Product • 1) for base-band sync function • = (duration T) • (BW of main lobe = 1/T) =1 • 2) Trms Wrms  1/4 • “ = “ when Gaussian pulse • 2.6 Dirac Delta Function • 1. Definition • (t) = 0, t  0 •  (t) is even function of t • 2. Shifting property

  10. f g(t) G(f) f 1.0 t f   • 3. Replication property g(t)  (t) = g(t) • 4. Fourier Transform F [(t)] = 1 • 5. Applications of the Delta Function • 1) dc signal 1  (f) • 2) Complex Exponential Function • exp(j2fct) (f-fc) • 3) Sinusoidal Functions • cos (2fct) = 1/2 [exp (j2fct) + exp (-j2fct)] •  1/2 [(f-fc) + (f+fc)] • Sin(2fct) 1/2j [(f-fc) - (f+fc)]

  11. g(t) t g(t) + 1.0 t 0 - 1.0 |G(f)| |G(f)| 1/2 f f 0 • 4) signum Function • sgn[t] = +1, t > 0 • 0, t = 0 • -1, t < 0 • exp(-|a|t)sgn(t)  •  F[sgn(t)] = • 5) Unit step function u(t) = 1, t > 0 • 1/2, t = 0 • 0, t < 0 •  u(t) = 1/2 [sgn(t) + 1] • u(t) 

  12. 6) Integration in the Time Domain (Revisited) • Let

  13. 2.7 Fourier Transforms of periodic signals • Let a periodic signal be gTo(t) with period T0 • complex exponential Fourier series • where f0 = 1/T0 ; fundamental freq. • Generating function g(t) • g(t) = gTo(t) , - T0/2  t  T0/2 • 0, elsewhere • from • where G(f)  g(t) • (Observations) periodicity in time domain •  discrete spectrum defined at nf0 1 2 3 2 Use Poisson’s sum formula 1 3

  14. ex11)

  15. t g(t) T 2T 0 sampling 1 t T/2 T 0 f G(f)* 2/T 0 f 0 2/T G(f) f 0 sampling 2 t T 0 T/8 f 2/T 0 G(f)* f 2/T 0 <HW> 2.1, 2.4, 2.8, 2.17, 2.18

  16. y1(t) y2(t) h(t) h(t) x1(t) x2(t) y(t) h(t) x(t) h(t) c1x1(t) + c2x2(t) c1y1(t) + c2y2(t) h(t) h(t) (t) 2.8 Transmission of signals through linear system • Def) linear system : a system which holds the principle of superposition • 1. Time Response • 1) Impulse Response : the response of system to (t) • 2) Convolution y(t) = excitation time  • response time t • system - memory time t-  • ; a weighted integral over the past history of the input signal, weighted according to the impulse response of the system. 

  17. ex) x(KT) 1 0 1 2 3 h(KT) 2 -1 0 1 2 3 -2 -1 0 1 4 -4 -3 -2 -1 0 1 4 5 1 5 6 1 6 7 1 7 y(kt) -1 0 1 2 3 4 5

  18. t T * * t T t t T T   t t -2T 2T 2T T  * x(t) 1 0 y(t) -1 1 0 -1 남자 여자 * correlation

  19. 1 • ex12) Tapped-Delay-line Filter • assumptions) h(t) = 0 for t < 0 • h(t) = 0 for t  Tf •  • sampling with , t=n, =k • where N  = Tf • let wk = h(k )  • y(n ) = • = w0x[n ] + w1 x[n  - ] + ..... + wN-1 x[n -(N-1) ] 2

  20. y(t) x(t) h(t) • 2. Causality & stability • 1) Causal if a system does not respond before the excitation is • applied h(t) = 0, t < 0  causality  Real time으로 동작 하는 system  must be causal  Memory 기능이 있는 것  can be non-causal • 2) Stable if the output signal is bounded for all bounded input • signals (BIBO) • cf, BIBO: bounded input-bounded output BIBO stability criterion BIBO stability  • 3. Frequency Response • 1) y(t) = x(t)  h(t) Y(f) = X(f)H(f)

  21. B 0 -B fc+B -fc fc-B • 2) H(f)의 (freq. domain에서의) 표현  H(f) = |H(f)| exp(j(f)) |H(f)| : Amplitude response (f) : phase response  h(t)가 real  H(f) : conjugate symmetry |H(f)| = |H(-f)| even (f) = - (-f) odd  polar form ln H(f) = ln |H(f)| + j (f) = a(f) + j (f) a(f):gain[nepers] (f):[radians] )  a’(f) = 20 log10 |H(f)| [dB] decibels  a’(f) = 8.69 a(f)  1 neper = 8.69 dB • 3) BW - 3 dB BW • 4. Paley-Wiener Criterion : freq. domain equivalent of • causality requirement • a(f) : gain of causal filter • 

  22. t0 =0 1/B t0 >0 t0 X(t) H(f) f -T/2 T/2 B -B B=5/T, BT=5 BT=10 10/T 5/T 1/T 2.9 Filters • 1. Ideal Low Pass Filter • |H(f)| = 1, -B  f  B • 0, |f| > B  h(t) = 2B sinc[2B(t-t0)] • (f) = -2f t0 : linear phase • To make a causal filter, | sinc[2B(t-t0)] | << 1 for t < 0 • If making digital filter, non-causal is O.K. • 2. computer experiment I pulse response of ideal LPF

  23. BT oscillation freq. 5 5 Hz 10 10 Hz 20 20 Hz 100 100 Hz overshoot (%) 9.11 8.98 8.99 9.63 (observations) overshoot =  9 % Gibb’s phenomenon  overshoot is independent of B  frequency of ripple is B • 3. Fig 27. B = 1 Hz 일 때 f0 = 0.1(T=5), 0.25(T=2), 0.5(t=1), • 1(T=0.5) Hz 입력이 들어갔을 때의 output • conclusion) BT  1 이 되어야 recognizable output이 나온다 • 4. Design of Filters • 1) Basic Design steps  approximation of a prescribed frequency response by a realizable transfer function  Realization of the approximating transfer function by a physical device • Ringing

  24. = • 2) Stable system : BIBO  complex frequency s = j2pf plane 상에서 표시 H’(s) is a rational function H’(s) = H(f) | j2pf=s z1 z2, ... zm : zeros p1 p2, ... pn : poles stability  Re[pi] < 0 for all i  Minimum-phase systems Re[pi] < 0, Re[zi] < 0  Non-minimum phase systems Re[pi] < 0, - Re[zi]   • 3) Butterworth filters Chebyshev filters • 4) Implementation of filters  Analog filters : (a) L, C (b) C, R, OP-amp  Discrete-time filters : switched-capacitor filters (SAW) surface accoustic wave filters  Digital filters : FIR, IIR (장점) programmable, flexibility SI SR

  25. sgn(f) 1 f • And 1/pt  -jsgn(f) -1 • 2.10 Hilbert Transform • 1. Frequency selective filters • Phase selective filters 180º : ideal transformer ± 90 º : Hilbert Transform • 2. Def. of Hilbert Transform 3. Applications 1) SSB Modulation 2) Mathematical basis for the representation of band-pass signals

  26. G(f) f x  0 jG(f) f • ex13) • 4. Properties of Hilbert transform • Assumption) g(t) is real-valued • property • 1) & have the same amplitude spectrum • 2) • 3) pf)

  27. G(f) G+(f) f f W W -W -W 2.11 Pre - envelope • 1. Pre-envelope for positive frequency. • For a read-valued signal g(t) • pre-envelope of g(t) • 2. Pre-enveloped for negative frequency.

  28. G(f) G-(f) f f W W -W -W Pre-envelope for negative freq. Re( • )  • 3.용도: Useful in handling band-pass signals and systems • 2.12 Canonical Representations of Band-Pass signals • 1. Base-band 신호와 Pass-band신호의 관계 • Base-band signal ( 복소수 ) : complex envelope • Pass-band signal ( 실수 ) : band-pass signal, narrow-band signal

  29. Pre-envelope of g(t) • physical line • 2 line( 복소수) 1 line( 실수) spectral efficiency is same

  30. 2. Physical Implementation of pass-band signal

  31. 3. Expression in the polar form • Pass-Band • 4. Envelope 용어 정리

  32. g+(t)real t -T/2 T/2 g +(t)image g(t) f 0 0 0 -fc fc fc • ex14)

  33. 2.13 band-pass systems • 1.Pass-band 신호를 Base-band에서 표현

  34. 2. Complex Filter의 구현

  35. 3. Band-pass system의 response를 구하는 과정 summary • 4. Computer Experiment II. Response of Ideal Base-pass • Filter to a pulsed RF Wave BT=5일 경우의 RF파형 Base-band 파형 + Modulation

  36. 2.14 Phase and Group Delay • A dispersive channel in a polar form

  37. t fs T T=NTs fs fs=Nf 2.15 Numerical Computation of the Fourier Transform • 1. DFT & IDFT • 1) Nyquist Sampling Theorem • Sampling Rate should be greater than twice the highest frequency component of the input signal to avoid aliasing. • 2) DFT & IDFT • Given finite data sequence {g0,g1,•••,gN-1} • ex) analog gn=g(nTs) DFT of gn • where k=0,1,•••,N-1 IDFT of Gk • where n=0,1,•••,N-1 {G0,G1,•••,GN-1} : transform sequence k=0,•••, N-1 : frequency index

  38. 1cycle/N 2cycle/N DC 3) Physical meaning of DFT • 2. Interpretation of the DFT and the IDFT. • DFT & IDFT: Gk and gn must be periodic. • DFT & IDFT: are linear. ••• •••

  39. (1) k = 0, 1, 2, , , , , , ,N-1 • 3.FFT Algorithms. • DFT of gn • i.e. Wkn : periodic with period N. • Assume N=2L, where L is integer where , (1)

  40. 1 2 ; N/2-point FFT N point FFT = 2 [ -point FFT]

  41. ex) Fig 2.38 • ex) Fig 2.38 Butterfly.

  42. 200배 차이 N complex conjugate complex conjugate FFT where  : complex conjugate • # of computation of DFT N2complex(x)+N(N-1)complex(+) • # of computation of FFT if decimation in freq. • one complex(x) + 2complex(+) • ex) N=1024=1k DFT 1M • FFT 5K • 단 FFT는 2N개로 해야 함 • Other algorithm : Decimation-in-time algorithm • 4. Computation of IDFT  N log2N computations

  43. <HW1> 2.30, 2.32 • 문제) N=16(g0~g15)일 때의 Decimation-in-freq. Algorithm 을 • 그림으로 그려라. • <Computer HW> 2.1 (see book) Bit reversed index.

More Related