1.27k likes | 2.95k Vues
Introduction à la science des matériaux. Partie I 1- Cristallographie Morphologique. 2- Propriétés géométriques de la matière monocristalline. Partie II 3- Détermination des structures cristallines. 4- La matière cristalline réelle.
E N D
Introduction à la science des matériaux Partie I 1- Cristallographie Morphologique. 2- Propriétés géométriques de la matière monocristalline. Partie II 3- Détermination des structures cristallines. 4- La matière cristalline réelle. 5- Rôle des défauts dans le comportement de la matière cristalline.
Généralités - Rappels Matériaux Cristallins Matériaux amorphes Organisation des atomes pour former une maille élémentaire. La maille élémentaire se répète dans les 3 directions de l’espace. Les atomes sont ordonnés à courtes distances (molécules). Mais la structure ne présente pas d’ordre à grandes distances.
Généralités - Rappels Matériaux Cristallins Matériaux monocristallins Matériaux polycristallins Ensemble de petits monocristaux (grains) Limites = joints de grains La maille élémentaire se répète dans les 3 directions de l’espace. Limites = bords de la pièces
Généralités - Rappels Matériaux polycristallins Matériaux monophasés Matériaux polyphasés Tous les grains ont même nature chimique et cristallographique Deux ou plusieurs types de grains (nature chimique ou cristallographique) coexistent
Généralités - Rappels Nature chimique, nature cristallographique taille, forme, orientation, répartition, des grains dans le matériau = Microstructure
m 1 pièces : > 1 mm 10-3 10-6 Microstructure : quelques 0.1 à 10 µm 10-9 Structure cristalline : quelques 0.1 à 1 nm Généralités - Rappels Ordres de grandeurs des dimensions
Introduction à la science des matériaux Partie I 1- Cristallographie Morphologique. 2- Propriétés géométriques de la matière monocristalline. Partie II 3- Détermination des structures cristallines. 4- La matière cristalline réelle. 5- Rôle des défauts dans le comportement de la matière cristalline.
Objectifs Un matériau cristallin Paramètres de réseau + motif + éléments de symétrie = une structure unique (carte d’identité). Comment mettre en évidence cette structure ? Analyse des phases d’un matériaux Interactions rayonnements / matière
Attention ! Points à avoir parfaitement assimilés. • Indices de Miller d’une direction. • Indices de Miller d’un plan. • Distances interréticulaires. • Espace réciproque.
3- Détermination des structures cristallines I- Caractéristiques des rayons X II- Interactions « RX - matières » A- Absorption B- Diffraction III- Détermination des structures cristallines IV- Sphère d ’Ewald - Application à la microscopie électronique
l Diffusion Rayleigh (diffusion élastique) Interaction entre un rayonnement monochromatique (longueur d ’onde l) et les éléments (atomes, ions) constituants de la matière l Onde plane Diffusion élastique (conservation de l) = diffusion Rayleigh
q Diffraction d ’un rayonnement X . Centres = sources ponctuellessynchrones entre elles et cohérentes avec le rayonnement incident. Dans une direction q, interférence à l ’infini entre les rayonnements réémis par les centres diffusants (atomes, ions). Interférences constructives (addition des amplitudes) si: Différence de marche = N . l
R E q q (hkl) q q dhkl Différence de marche = 2 d(hkl) sinq Diffraction d ’un rayonnement X
Diffraction d ’un rayonnement X Intensité maximale si la différence de marche : 2 d(hkl) sinq = N . l N = ordre de diffraction Remarque : d(Nh Nk Nl) = d(h k l) / N sinq = N.l / (2.d(hkl)) = l / (2.d(hkl) / N) = l / (2.d(Nh Nk Nl)) Les plans (hkl) donnent à l ’ordre N un maximum d ’intensité pour le même angle que les plans (Nh Nk Nl) à l ’ordre 1. Relation de Bragg 2 d sinq = l d = d(Nh Nk Nl) Nh Nk Nl Indices de Miller généralisés
I 2q (°) Diffraction d ’un rayonnement X Distribution discrète des distances interréticulaires Distribution discrète de l ’intensité diffractée en fonction de q Intensité recueillie lors d ’un balayage en q
Diffraction d ’un rayonnement X Petit calcul : Donnez la position angulaire 2q du pic de diffraction des plans (100) d ’un cubique faces centrées de coté = 4 Å . l = 1.54056 Å d(100) = 4 Å sinq = l / (2 d(100)) = 1.54056 / 8 q = 11.1 ° 2q = 22.2 °
Diffraction d ’un rayonnement X Remarque : Position angulaire 2q du pic de diffraction à l ’ordre 2 des plans (100). sinq = 2 l / (2 d(100)) = 1.54056 / 4 2q = 45.3 ° Position angulaire 2q du pic de diffraction à l ’ordre 1 des plans (200). d(200) = 2 Å sinq = l / (2 d(200)) = 1.54056 / 4 2q = 45.3 °
Différence de marche = 0 Interférence constructive Intensité diffractée Cas simple d’une maille primitive. Un seul centre diffusant (atome, ion) par maille. A(hkl) f I(hkl) f 2 f = facteur de diffusion aux rayons X du centre pour les plans hkl
Différence de marche quelconque Déphasage Intensité diffractée Cas d ’une maille élémentaire. L ’intensité diffractée dépend : - Des centres diffusants. - Leurs natures (facteur de diffusion atomique). - leurs coordonnées. - Des plans (hkl).
Intensité diffractée Facteur de structure S : S = Se fe . exp[ j.2.p.(Nh.xe + Nk.ye + Nl.ze)] Se = S ensemble des centres diffusants constituant le motif. xe yeze = coordonnées des centres diffusants. fe = facteur de diffusion du centre e. Nh Nk Nl = indices de Miller des plans. A(hkl) S I(hkl) S 2 Si un seul centre e en x = 0, y = 0 et z = 0 A(hkl) f I(hkl) f 2
Intensité diffractée S = Se fe . exp[ j.2.p (Nh.xe + Nk.ye + Nl.ze)] Application au cubique mode centré. 2 nœuds : x1 = 0 y1 = 0 z1 = 0 x2 = 0.5 y2 = 0.5 z2 = 0.5 S = f . { exp( 0 ) + exp[ j.p (Nh + Nk + Nl)] } Posons : P = (Nh + Nk + Nl) S = f . [ cos(0) + j.sin(0) + cos(P.p) + j.sin(P.p) ] S = f . [ 1 + cos (P.p)] Si P = (Nh + Nk + Nl) est impair S = 0 Si P = (Nh + Nk + Nl) est pair S = 2.f
[111] [1-1-1] Intensité diffractée Explications physiques. Cas des plans (111) d ’un cubique mode centré. Représentation d ’une coupe contenant les directions [111] et [1-1-1].
Différence de marche = l / 2 Interférence destructive A = 0 I = 0 Différence de marche = l [111] (111) [1-1-1] Intensité diffractée Les rayons diffractés s’annulent deux à deux Intensité = 0
Intensité diffractée Calcul de l’intensité diffractée par un cubique mode faces centrées. A vous de jouer !
Intensité diffractée 4 nœuds : x1 = 0 y1 = 0 z1 = 0 x2 = 0.5 y2 = 0.5 z2 = 0 x3 = 0.5 y3 = 0 z3 = 0.5 x4 = 0 y4 = 0.5 z4 = 0.5 S = f . { exp( 0 ) + exp[ j.p (Nh + Nk)] + exp[ j.p (Nh + Nl)] + exp[ j.p (Nk + Nl)] } Toutes les parties imaginaires = 0 j . sin (p.p) = 0 S = Se fe . exp[ j.2.p (Nh.xe + Nk.ye + Nl.ze)]
Intensité diffractée S = f . { 1 + cos[p (Nh + Nk)] + cos[p (Nh + Nl)] + cos[p (Nk + Nl)] } Si Nh, Nk et Nl sont de même parité, la somme de deux d ’entres eux est toujours paire. S = 4.f Si Nh, Nk et Nl sont de parités différentes, deux des sommes sont impaires et une est paire. S = 0
Intensité diffractée Les positions des nœuds dans la maille élémentaire peuvent entraîner des oppositions de phases (interférence destructives) et donc des extinctions (intensité nulle) pour certains plans. Les positions des atomes dépendent : - Des modes de réseau : Primitif (P), centré (I), faces centrées (F), bases centrées (C) - Des éléments de symétrie. Les conditions d ’extinctions peuvent donc renseigner sur les caractéristiques de la maille élémentaire.
3- Détermination des structures cristallines I- Caractéristiques des rayons X II- Interactions « RX - matières » A- Absorption B- Diffraction III- Détermination des structures cristallines IV- Sphère d ’Ewald - Application à la microscopie électronique
Caractéristiques des rayons X Rayonnements électromagnétiques de longueurs d ’ondes comprises entre 0.1 nm et 10 nm. Rayonnements très énergétiques : E = h . n = h . c / l (h = constante de Planck) E (keV) = 1.24 / l (nm) Pourquoi des rayons X ? Le phénomène de diffraction n ’est possible que si la longueur d ’onde est du même ordre de grandeur que les éléments diffractants. Distances interréticulaires de quelques nm.
Des raies de longueur d ’onde bien déterminées Un fond continu en longueurs d ’ondes Génération des RX Génération des rayons X Impact d ’électrons de haute énergie sur la matière: Production de deux types de RX Il l
N E M L RX K Génération des RX Les raies de longueurs d ’onde déterminées Transitions électroniques de désexcitation Emissions les plus intenses : L K (raies Ka) M K (raies Kb)
1.5 ls ls Génération des RX Le fond continu Perte d ’énergie cinétique « Bremstrahlung » des électrons dans la matière. D Ec = h . n = h. c / l Si les électrons sont accélérés sous une tension V leur énergie initiale est: E0 = e.V d ’ou D Ec(maxi) = e.V et ls = h.c / e.V ls = longueur d ’onde seuil
3- Détermination des structures cristallines I- Caractéristiques des rayons X II- Interactions « RX - matières » A- Absorption B- Diffraction III- Détermination des structures cristallines IV- Sphère d ’Ewald - Application à la microscopie électronique
ERx = h.n N M L K Absorption des RX Phénomène essentiellement liée à l ’ionisation des atomes par éjection d’électrons des couches internes. Niveaux d’énergies discontinus Discontinuité de l ’absorption.
m r x m/r Z3 . l3 Bragg - Pierce K L M l E Absorption des RX Niveaux d ’énergies discontinus. Discontinuité de l ’absorption par un matériau donné. Utilisation des discontinuités en filtration
Il(x) Il(x+dx) Absorption des RX Quantification de l ’absorption des RX. Il(x=0) Sur une épaisseur dx très faible. Il(x+dx) - Il(x) = - ml . Il(x) . dx dIl (x) = - ml . Il(x) . dx d Il(x) / Il(x) = - ml . dx
Absorption des RX Quantification de l ’absorption des RX. d Il(x) / Il(x) = - ml . dx En intégrant depuis x = 0 : ln [ Il(x) / Il(0) ] = - ml . x Il(x) = Il(0) exp ( - ml . x ) Il(r . x) = Il(0) exp [ - (ml / r ) . (r . x ) ] ml / r : Coefficient d’absorption massique du matériau (cm2 / g) pour la longueur d ’onde l. r . x : Epaisseur massique (g / cm2).
3- Détermination des structures cristallines I- Caractéristiques des rayons X II- Interactions « RX - matières » A- Absorption B- Diffraction III- Détermination des structures cristallines IV- Sphère d ’Ewald - Application à la microscopie électronique
Comment faire ? Diffractogramme X : Intensité diffractée en fonction de 2q Position des pics : Paramètres du réseau Intensités : Contenu de la maille Nécessité de produire des rayonnements X. Bombardement d ’une cible par des électrons. Nécessité de générer un rayonnement X monochromatique (l unique) Utilisation d ’un filtre ou d ’un monochromateur.
1 4 2 e- RX 3 5 Appareillage Schéma de principe : Emetteur RX 1 : Filament = cathode (-) 2 : Wehnelt (-) 3 : Cible = anticathode ou anode (+) 4 : Fenêtre 5 : Filtre
Echantillon à étudier q D 2q Appareillage Diffractomètre q - 2q Schéma de principe Détecteurs RX électrons amplification Ex. détecteur à scintillations E
I lc(A) l Appareillage Emetteur RX (anticathode matériau A) Rayonnement polychromatique Ka1 Ka2 Kb lc = longueur d’onde associée à lénergie d ’ionisation de la couche K lkb = transition M K lka = transition L K
m/r I lc(A) l Appareillage Emetteur RX (anticathode matériau A) Rayonnement polychromatique Ka1 Ka2 Kb Filtre (matériau B) Discontinuité d ’absorption entre les raies Ka et Kb du matériau A Impossibilité de séparer Ka1 et Ka2
Appareillage Monochromateur Objectif : Eliminer le fond continu et les raies Kb et Ka2 Principe Diffraction du faisceau RX émis par les plans (hkl) donnés d ’un cristal monochromateur. Relation de Bragg : 2 . d . sinq = l Vérifiée pour une longueur d ’onde donnée pour d et q fixées
Une famille (hkl) // surface Cristal monochromateur qm qm Appareillage 2 . d . sinq = l Angle q = qm tel que la relation de Bragg soit vérifiée pour l Ka1 2 . d . sin(qm) = l(Ka1) qm angle de monochromatisation pour Ka1
D 2q E qm q qm Appareillage Diffractomètre q - 2q avec monochromateur avant.
D qm qm 2q E q Appareillage Diffractomètre q - 2q avec monochromateur arrière.
D E q q Appareillage Diffractomètre q - q
q(N00) q(N00) (N00) 3- Détermination des structures cristallinesMéthode des poudres Pourquoi méthode des poudres ? Cas d ’un monocristal Seuls les plans bien parallèles à la surface de l échantillon sont en mesure de diffracter correctement. 2 . d . sinq = l
(100) (200) (300) I ... 2q 3- Détermination des structures cristallinesMéthode des poudres Balayage angulaire q Peu de pics intenses