1 / 18

¿Por qué enseñar matemáticas en el nivel inicial?

¿Por qué enseñar matemáticas en el nivel inicial?. María Lucia Gervacio. Si el nivel inicial asume, entre sus funciones, la transmisión de conocimientos que retomen, amplíen y profundicen los aprendizajes extraescolares de los niños

garret
Télécharger la présentation

¿Por qué enseñar matemáticas en el nivel inicial?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ¿Por qué enseñar matemáticas en el nivel inicial? María Lucia Gervacio

  2. Si el nivel inicial asume, entre sus funciones, la transmisión de conocimientos • que retomen, amplíen y profundicen los aprendizajes extraescolares de los niños • y la sociedad ha relevado entre tales conocimientos a un conjunto de saberes • matemáticos, podríamos preguntarnos, ¿cuál es el sentido formativo de incluir • tales saberes en la escena de los jardines? En otros términos, ¿por qué • consideramos que es importante enseñar matemática a los alumnos del nivel • inicial? • Comenzar a transitar con los alumnos el recorrido de los aprendizajes • matemáticos implicará introducirlos en un modo particular de hacer y • producir conocimiento que ha sido elaborado por la cultura. Desde • esta perspectiva nos interesafundamentalmente organizar la enseñanza de la • matemática en el nivel.

  3. En efecto, “hacer matemática” supone que los niños: • • resuelvan problemas, • • adelanten posibles soluciones, prueben, • • se equivoquen, corrijan intentos fallidos, • • comuniquen a sus pares modos de resolver, • • consideren las resoluciones o afirmaciones de otros; • • discutan, defiendan posiciones, intenten mostrar la incorrección de un • procedimiento o afirmación; • • establezcan algunos acuerdos. • Se tratará pues de crear en las salas las condiciones didácticas que propicien diferentes momentos donde puedan ir teniendo lugar y desarrollándose algunos de los aspectos del funcionamiento matemático mencionados.

  4. No enseñamos matemática para desarrollar la inteligencia ni parafavorecer el desarrollo operatorio • ¿Enseñamos matemática en los Jardines para desarrollar la inteligencia de los • niños? En principio, habría que revisar qué entendemos por inteligencia. Por • otra parte, creemos que, en última instancia, todos los aprendizajes escolares • abonan de alguna manera el desarrollo intelectual y que este último no • constituye en sí mismo un objetivo de la enseñanza en ninguno de sus niveles. • Desde aquella perspectiva que buscaba el desarrollo de la inteligencia infantil, • una posición muy extendida ha basado la enseñanza matemática en el Jardín • en la finalidad de favorecer el desarrollo de las operaciones intelectuales que • subyacen a la conservación de las cantidades. Así, durante mucho tiempo, hemos • propuesto fundamentalmente –y, muchas veces, exclusivamente- a nuestros • alumnos realizar tareas de clasificaciones y seriaciones (consideradas como • actividades “prenuméricas”) y aún hoy pueden encontrarse materiales impresos • centrados en esta propuesta.

  5. Por un lado, las conservaciones piagetianas constituyen nociones que no dependen de la intervención escolar, es decir van a desarrollarse en los intercambios de los niños con su ambiente. Por otro lado, la conservación de las cantidades discretas no agota los conocimientos numéricos ni constituye una condición para que puedan desarrollarse una serie amplia y compleja de conocimientos numéricos que comienzan a construirse desde muy temprana edad tales como la serie oral, los procedimientos de conteo, los conocimientos sobre las escrituras numéricas, el funcionamiento de los números en diferentes contextos, etc. y sobre los cuales sí puede incidir decisivamente la enseñanza para enriquecerlos, ampliarlos, hacerlos avanzar. Para profundizar en un análisis crítico al respecto, remitimos al lector a COLL (1983); BRUN (1994); LERNER (2001); QUARANTA (1999)18. En pocas palabras, hoy podemos afirmar que las razones de la inclusión de contenidos matemáticos en el nivel no se vinculan en absoluto con aportar directamente al desarrollo de las nociones piagetianas de conservación y, en consecuencia, el trabajo matemático en las diferentes secciones no puede restringirse a clasificar, seriar, poner en correspondencia, o contar colecciones muy pequeñas.

  6. No enseñamos matemática para preparar a los alumnos para laescuela primaria • ¿Se tratará de prepararlos para el primer año de EGB? La inclusión de contenidos matemáticos en el nivel inicial se ha entendido muchas veces como si se tratara de hacer antes algo de lo que usualmente se hace en la escuela básica. Se comenzaron a presentar los números de uno en uno y en orden, con una fuerte centraciónen su trazado. Así, veíamos a los alumnos caminar sobre la escritura del 3 sobre el piso del patio, luego picar sobre un 3 escrito en una hoja, repetirlo una cantidad escribirlo junto a diferentes colecciones de tres elementos, etc. • Este no es el lugar para abordar críticamente la enseñanza habitual de las escrituras numéricas pero sí queremos mencionar que no se trata de “adelantar” • las cosas que se venían haciendo en la escuela primaria. Si bien es cierto que • todo nivel de enseñanza recupera los conocimientos de los que se han ocupado • los niveles anteriores y prepara para los siguientes, se trata de buscar razones • que nos señalen la necesidad de incluir contenidos matemáticos que sea posible • e interese abordar específicamente en el nivel inicial.

  7. No enseñamos matemática sólo para transmitir a los alumnosconocimientos para la vida cotidiana. • ¿Se tratará entonces de enseñarles los conocimientos matemáticos que • necesitarán para manejarse en su vida cotidiana? Otra respuesta al interrogante • que planteábamos al comienzo ha llegado a sostener que la inclusión de un • sector de la matemática en la enseñanza reside básicamente en que se trata de • conocimientos útiles. • Ahora bien, la utilidad práctica como único o principal criterio es peligroso • por varios motivos. Entre ellos, porque de ese modo se está colocando al resultado • de esta actividad (los conceptos) como único elemento central y a la actividad • misma en segundo plano (Bkouche et al, 199119). Como veremos luego, en el • campo del conocimiento matemático, actividad y productos de la misma son • solidarios entre sí, no pueden pensarse aisladamente una de otros.

  8. Por supuesto que es importante que los alumnos puedan apropiarse de • conocimientos útiles que constituirán herramientas para desempeñarse en su • vida de todos los días, sólo que ésta no es la única razón para enseñarles • matemática. Por otra parte, esos conocimientos los adquieren en los contextos • cotidianos mismos, sin necesidad de intervención de la escuela. Consideramos • que también es relevante que se acerquen a un modo de pensar y hacer • particular que ha construido la humanidad como es el dominio matemático. • Ahora bien, veamos cómo se engarza esta intención con los procesos constructivos • que involucran conocimientos matemáticos que vienen desarrollando los niños • en sus intercambios extraescolares.

  9. ¿Qué saben los niños? ¿Cuál es el papel del jardín frente aesos conocimientos? • onstruyen, en su actividad familiar o cotidiana, una diversidad de conocimientos acerca de los números, el espacio, las formas y las medidas. Estos conocimientos son bien diversos entre los diferentes alumnos que comparten una sala, no sólo en cuanto a su extensión sino también en cuanto a los tipos de problemas en los cuales pueden ser utilizados. • Por ejemplo, los conocimientos referidos al conteo varían de acuerdo a la cantidad de elementos que los niños pueden llegar a contar respetando la correspondencia entre cada objeto y el nombre de un número, pero también varían de acuerdo a cuáles son las diferentes situaciones en las que el alumno puede usar el conteo como instrumento de solución. Esto es así porque, a los ojos de los niños que están aprendiendo, no es lo mismo tener que contar dos grupos de cartas para compararlas y saber quién tiene más; que tener que contar dos grupos de cartas para igualarlas –esto es, hacer que ambos grupos lleguen a tener la misma cantidad de cartas-, etc. Tampoco es lo mismo contar una colección donde puedo desplazar sus elementos y, por lo tanto, es más fácil • controlar los elementos ya contados de los que restan por contar, que hacerlo con una colección donde no puedo desplazar sus elementos, sobre todo si éstos no tienen una organización espacial que facilite dicho control acerca de lo ya contado y lo no contado.

  10. Ahora bien, ¿cuál es el papel de la institución escolar frente a estos • conocimientos? Seguramente, se trata de partir de reconocer su existencia y • considerarlos en la propuesta pedagógica. Sin embargo, abrir las puertas de las • salas a los conocimientos matemáticos que poseen los alumnos, si bien es una • condición necesaria para el trabajo didáctico que se propone, no constituye su • finalidad. Limitarse a recuperar lo que los alumnos ya saben implicaría negar la • función del Nivel Inicial que mencionábamos al comienzo en tanto transmisor • de un sector de la cultura. Se trata entonces de recuperar los conocimientos • numéricos, espaciales, sobre las formas y las medidas que construyen los niños • en su ambiente familiar para extenderlos, profundizarlos y ampliarlos:

  11. ¿Por qué la escuela debe hacerse cargo de estos saberes? • Porque de hecho forman parte de los conocimientos que los niños comienzan a construir en sus interacciones con el ambiente que los rodea. En consecuencia, si forman parte de las ideas que los chicos se formulan acerca de la naturaleza y el funcionamiento de ciertos objetos físicos y culturales y, además, constituyen un sector de la cultura recortado por la sociedad como importante de ser transmitido a las futuras generaciones –por el acceso que permite a otros conocimientos, por la interpretación que permite hacia ciertas parcelas de la realidad, por el acceso a una forma particular de pensamiento y producción de conocimiento-, parecerían tener un espacioqueocupar dentro de las propuestas de enseñanza en el nivel inicial.

  12. para el nivel inicial se propone recuperar y hacer avanzar los conocimientos matemáticos de los cuales disponen los alumnos acerca de: • - Conocimientos numéricos relativos a: • • El funcionamiento de los números en diferentes tipos de problemas y contextos. • • El uso y la comprensión de la serie numérica oral y su utilización en procedimientos de conteo • • El uso y la comprensión del sistema de numeración escrito. • Conocimientos espaciales relativos a: • • La ubicación espacial y los desplazamientos propios y de diferentes objetos, junto con la necesidad de consideración de puntos de referencia. • • La producción e interpretación de comunicaciones relativas a posiciones y recorridos • • Los diferentes puntos de vista desde los cuales puede ser observado unobjetoo situación • - Conocimientos geométricos relativos a: • • Las formas de figuras • • Las formas de cuerpos • - Conocimientos relativos a las mediciones y las medidas convencionales y no convencionales.

  13. ¿Cómo trabajar en matemática en el nivel inicial?¿A qué estamos denominando “problema”? • Para que una situación constituya un problema debe reunir una serie de condiciones. Es necesario: • - Que comporte una finalidad desde el punto de vista del alumno, esto es que el niño advierta que tiene algo que alcanzar y en qué consiste esa meta. • Algunos ejemplos: • • Traer justo la cantidad de vestidos para vestir un grupo de muñecas. • • Lograr que un compañero pueda reproducir una construcción con unas figuras geométricas dadas para lo cual deberá transmitir con la mayor precisión posible cuáles son las figuras y en qué posición debe ubicarlas unas en relación con otras. • • Anotar el puntaje de las sucesivas vueltas de un juego para no olvidarlo • - Que no le resulte tan difícil de modo que, con los conocimientos disponibles, el niño pueda comenzar un proceso de búsqueda de solución. Y, sin embargo, al mismo tiempo, • - Que los conocimientos de los cuales dispone, no le resulten suficientes para que encuentre la respuesta a la situación de manera inmediata. Es decir, el problema tendrá que proponer un desafío intelectual al alumno y, para que una situación resulte desafiante, es necesario que oponga alguna dificultad a quien intenta resolverla, que deba construir la solución. • - Que la solución pueda alcanzarse a través de diferentes procedimientos.

  14. ¿Qué tipo de trabajo con estos problemas estamos buscandoinstalar en las salas? • El trabajo de resolución, donde los niños intenten buscar una respuesta al • problema a partir de lo que saben, será el punto de partida para que puedan • comenzar a instalarse algunos momentos donde los alumnos comuniquen sus • procedimientos al resto de la sala, discutan acerca de algunas cuestiones del • trabajo realizado. Por ejemplo, frente a la confrontación de diferentes • procedimientos en una situación donde se trata de ir a buscar la cantidad justa • de hojas para dibujar para cada mesa –o a propósito de la situación de los • vestidos mencionada-, podemos escuchar por parte de los chicos algunas de las • siguientes afirmaciones: “en lugar de agarrar un montón, es mejor contarlos”, o • “vos contaste dos veces a Joaquín, hay que contarlo una sola vez”, “te olvidaste • de Celeste”, etc.

  15. En ese intercambio, conducido por el maestro, éste podrá ofrecer información vinculada con los conocimientos que se han puesto en juego y podrá también ir recuperando las conclusiones a las que ha llegado el grupo –muchas veces provisorias-, como por ejemplo “Dijeron que contar los chicos les servía para • saber cuántas hojas había que traer”; o también “que para contar los chicos (o las hojas) no había que olvidarse de ninguno”, etc., conclusiones que se podrán • retomar frente a nuevas situaciones.

  16. Algunas consideraciones respecto a las actividades cotidianas ylos juegos • Recién mencionamos un ejemplo relativo a una situación cotidiana de la • sala. Por cierto, las actividades de rutina permiten muchas veces buenas • oportunidades para plantear problemas matemáticos a los alumnos. No obstante, • por un lado, será necesario ser cuidadosos de que realmente estemos planteando • un problema que los alumnos intenten resolver con sus propios recursos (en ese • caso, habrá que también considerar si disponen de un dominio de la serie • numérica oral que les permita tratar de utilizarla para resolver esa situación) y • no siempre –o casi siempre- a través de un procedimiento indicado por la maestra • (como sería si les hacemos colgar un cartelito por cada alumno presente, o les • mostramos directamente cómo contarse, etc.). Por otro lado, también será • necesario no reiterar la misma actividad todos los días. En pocas palabras, desde • el punto de vista del aprendizaje matemático, nos interesan algunas actividades • cotidianas de la sala en tanto fuentes que nos permiten proponer problemas a • los niños que realmente los lleven a intentar utilizar los conocimientos que • queremos hacer avanzar como medios de solución. (CASTRO, 199923)

  17. ¿Y qué podríamos decir acerca de los juegos? No nos ocuparemos del interés del juego en general. Sólo queremos mencionar que, sin dejar de reconocer el valor de esta actividad desde otros puntos de vista, desde su importancia para el aprendizaje matemático, nos interesa en tanto permite plantear determinados problemas que hagan funcionar los conocimientos a los que apuntamos. Así, por ejemplo, tratar de armar una figura compleja a partir de figuras geométricas más simples24, efectivamente hará intervenir un análisis de las figuras y de cómo se pueden componer para dar lugar a otras. O también, el juego de la Guerra con cartas, hará intervenir criterios para comparar escrituras numéricas, o comparación de cantidades en el caso en que se trabaje con cartas con las colecciones dibujadas en lugar de los números escritos. Luego, podrá organizarse • un espacio donde se comenten y discutan los criterios utilizados. Vemos que no es el juego en sí mismo a lo que estamos apuntando como posible situación de enseñanza matemática sino a los problemas que algunos juegos permiten plantear. • Por supuesto, los conocimientos buscados no aparecen mágicamente, se requerirá de situaciones que los hagan funcionar y de intervenciones docentes que habiliten su aparición y promuevan su difusión dentro de la sala, su discusión y avance.

  18. En síntesis, el interés de las situaciones que se propongan para la enseñanza, • ya sean a partir de las actividades de rutina del jardín, de juegos, de la “vida • cotidiana”, insertas en proyectos, dentro de las unidades didácticas, o como • situaciones específicas planificadas para el tratamiento de determinado • contenido, deberá ser analizado desde el punto de vista de los problemas que • permitan plantear. Esto es, desde el punto de vista de los conocimientos que • requieran para ser solucionados, de las posibilidades de los niños de comenzar • algún intento –aunque errado, incompleto, etc.- de solución, de las posibilidades • de generar intercambios, de organizar alguna instancia de reflexión colectiva; • en una palabra, de la posibilidad de incluirlos dentro del funcionamiento • matemático que estamos buscando caracterizar. • Nuevamente, ¿qué es “hacer matemática”

More Related